
XYZ	is	a	colorspace	like	RGB.	The	acronym	of	XYZ	doesn't	stand	for	anything,	unlike	RGB	-	abbreviation	of	Red,
Green,	Blue	-	or	CMYK	-	abbreviation	of	Cyan,	Magenta,	Yellow,	Black/Key.

Why	the	choice	of	XYZ
Why	don't	we	use	the	RGB	directly	?

We	will	see	why	in	this	chapter.

In	the	chapter	history	of	digital	cinema,	I	had	mentioned	the	SMPTE	DC28	Color	group,	which	worked	on	all
aspects	of	colorimetry.	They	had	many	discussions	about	various	color	space.	A	Parametric	RGB	with	metadata
was	mentioned	but	it	was	dismissed	because	if	the	metadata	were	misinterpreted	by	the	projector,	the	colors	will
be	altered.

In	the	end,	the	group	opted	for	the	XYZ	color	space	because	of	its	wide	color	gamut,	and	because	it	has	existed
since	decades	(since	1931),	this	color	space	is	already	used	in	other	fields,	is	future-proof	and	covers	the	entire
color	space	(even	outside	the	visible	spectrum).	It	is	so	wide	that	it	can	cover	both	the	digital	cinema	color	space
and	the	35mm	color	space	:

«	In	purple,	the	visible	spectrum	of	human	eyes	»

The	XYZ	color	space	is	independent	of	both	metadata	and	specific	projection	equipment.	Its	luminance	is	encoded
in	the	Y	value,	and	at	last,	its	integration	into	various	workflows	won't	be	very	difficult	(all	you	need	is	to	linearize
the	RGB	input,	apply	its	own	3x3	conversion	matrix	and	to	encode	the	gamma).

The	XYZ	color	space	has	a	wide	color	gamut	(in	blue),	it	encompasses	the	whole	visible	spectrum	(in	purple)	and
therefore	covers	almost	1	all	of	colorspace	available.	We	can	easily	switch	to	more	limited	colorspace	without
much	trouble.

The	other	advantage	is	its	independence	from	another	colorspace	:	while	the	image	is	in	XYZ,	the	projector	uses

XYZ	

PREFACE

HISTORY	AND	SMPTE	CHOICES

file:///data/www/sherpadown/dcp-inside/DCI
https://e-cours.univ-paris1.fr/modules/uved/envcal/html/compositions-colorees/representations-couleur/modeles-ref-cie/modele-xyz.html
https://en.wikipedia.org/wiki/CIE_1931_color_space
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn1
file:///data/www/sherpadown/dcp-inside/TOC
file:///data/www/sherpadown/dcp-inside/XYZ.en.pdf

the	DCI-P3	colorspace	(see	the	paragraph	"DCI-P3	colorspace	below).	The	DCI-P3	is	a	wider	colorspace	than	sRGB-
Rec709	colorspace,	but	not	as	wide	as	the	Rec2020	colorspace.	If,	in	the	future,	the	equipment
manufacturers	might	change	the	output	colorspace,	such	as	to	Rec2020	or	a	new	DCI-P2-20xx,	we	don't	need	to
re-encode	the	entire	image,	and	therefore,	we	don't	need	to	regenerate	the	entire	DCP.	That's	the	advantage	of
using	the	XYZ	colorspace.

For	more	information	about	the	history	of	SMPTE,	the	choice	of	XYZ	colorspace,	the	experimentation	and
mathematical	equations,	I	suggest	the	book	Color	and	Mastering	for	Digital	Cinema	by	Glenn	Kennel	who
dedicates	a	specific	chapter	for	all	of	these	aspects.

You	don't	need	to	read	this	paragraph	to	understand	the	XYZ	conversion.
but	it	may	help	you	to	understand	where	it	comes	from	and	why	it	was	created.

In	the	1920s,	in	order	to	create	a	stable	definition	of	RGB	colorspace,	two	experimentations	were	initiated	..	with
the	means	of	the	time	:	a	bunch	of	human	observers	and	the	naked-eyes	tests.	These	works	led	to	the	publication
of	a	paper	defining	the	premises	of	the	CIE	RGB	:

However,	the	CIE	RGB	colorspace	has	several	problems,	especially	with	some	negative	values.	For	example,
several	red	values	are	below	the	zero	:

INSIDE	XYZ

https://pixelcraft.photo.blog/2021/11/17/demystifying-colour-viii-cie-colour-model/

The	Commission	Internationale	de	l'Eclairage	initiated	a	new	colorspace	derived	from	CIE	RGB	:	CIE	XYZ
colorspace.	In	1931,	the	XYZ	colorspace	was	standardized	under	the	name	"CIE	XYZ	1931"	:

For	the	curves	x,	y,	z,	it	might	be	difficult	to	explain	precisely	each	curve	2,	but	:

x	=	will	take	shorter	wavelength	(blue)	and	larger	wavelength	(red)
y	=	store	the	luminance	value.
z	=	will	take	shorter	wavelength	(blue)	only	(with	a	bit	of	yellow)

The	X,	Y,	and	Z	primitives	don't	have	physical	reality	3,	these	are	just	mathematical	concepts,	three	virtual
primary	colors,	where	the	Y	value	represents	the	luminance	component,	and	all	values	are	always	positive	4,	5,	6.

Through	the	years,	several	improvements	have	been	applied	to	the	XYZ	colorspace.	To	avoid	using	outdated
technical	methods	such	as	those	used	in	1931	(bunch	of	people,	rudimentary	tools),	the	new	XYZ	colorspaces
were	based	on	more	stable	foundations	and	were	named	CIE	XYZ	2006	and	CIE	XYZ	2015.

For	example,	now,	we	use	a	new	type	of	color	space	called	LMS	(for	Long,	Medium,	and	Short	wavelengths),
which	represents	how	the	light	is	absorbed	by	the	cones	in	the	retina	of	the	eye.	Through	various	experiments,
three	curves	have	been	obtained,	as	shown	in	the	following	diagram	(LMS	fonctions).	Based	on	these	LMS	curves,
we	can	now	generate	the	CIE	XYZ	Color	Matching	Functions	(CMF)	and	their	corresponding	x,	y,	z	functions	:

https://cie.co.at/
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn2
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn3
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn4
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn5
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn6
https://en.wikipedia.org/wiki/LMS_color_space
http://www.cvrl.org/ciepr.htm

↔

«	LMS	fonctions	» «	CIE	XYZ	Color	Matching	Functions	»

For	our	above	LMS	curves,	L,	M,	and	S	represent	the	different	types	of	photoreceptor	in	the	eye.	Thus,	the	S
curve	(blue)	is	associated	with	"blue-purple"	colors,	the	M	curve	(green)	is	associated	with	green	colors,	and
the	L	curve	(red)	is	associated	with	red-yellow	colors.

The	advantage	of	using	LMS	is	that	it	allows	us	to	generate	the	CIE	RGB	and	the	CIE	XYZ	colorspace	through
simple	linear	transformations	using	matrices

An	example	of	a	conversion	from	LMS	to	XYZ	2006;2015	using	a	simple	matrix	(marked	(b)	in	the	diagram	above)
7	:

x	=	(1.94735469					-1.41445123				0.36476327)	*	(l)	
y	=	(0.68990272						0.34832189				0)	*	(m)
z	=	(0															0													1.93485343)	*	(s)

These	functions	and	matrices	are	evolutions	of	the	original	CIE	XYZ	1931.	However,	the	XYZ	used	in	DCP	is	still
based	on	the	original	CIE	XYZ	1931.	In	the	future,	it	might	be	a	CIE	XYZ	2005;2016,	but	not	yet.

For	more	information	about	the	history	of	XYZ,	you	could	refer	to	these	two	websites	:

PixelCraft	-	Demystifying	Colour
An	excellent	website	about	the	CIE	1931	(in	french)

file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn7
https://pixelcraft.photo.blog/2021/11/17/demystifying-colour-viii-cie-colour-model/
https://modele-cie-1931.blogspot.com/

A	brief	aside	about	the	DCI-P3	colorspace	which	you	might	see	in	other	chapters.

The	RGB	DCI-P3	is	a	wider	colorspace	than	sRGB-Rec709	colorspace	(but	not	as	wide	as	the	Rec2020
colorspace).

DCI-P3	is	used	both	for	theatrical	projection	and	for	the	display	in	color	grading	software.

A	summary	:

DCI-P3	is	the	name	of	a	specific	RGB	for	theatrical	projection	or	postproduction	workflow	in	digital	cinema.
DCI-P3	is	a	colorspace	used	on	theatrical	projection	and	color	grading	software.
The	gamma	output	of	RGB	DCI-P3	is	Gamma	2.6	[SMPTE-431-2]

Depending	on	the	input	source,	you	may	work	on	various	colorspace,	such	as	sRGB	or	RGB	DCI-P3.	If	you	have
RGB	images,	you	must	pay	attention	to	which	ones	use	sRGB	and	which	ones	use	RGB	DCI-P3.	Advice	from	a	guy
who	lost	too	much	time	on	an	SRGB	input	misinterpreted	as	DCI-P3	:)

If	you	get	mixed	up,	conversion	process	won't	be	the	same,	the	matrices	will	differ,	and	the	input	gamma	too.
(sRGB	uses	a	gamma	2.2,	while	DCI-P3	uses	a	gamma	2.6)

The	XYZ	conversion	matrices	used	in	the	examples	in	this	chapter	are	based	on	RGB	DCI-P3.
You	may	see	this	format	a	lot	in	the	output	of	postproduction	software

To	convert	to	XYZ,	you	must	apply	a	matrix	transformation	to	each	value	from	the	source	:

DCI-P3	COLORSPACE

UNDERSTANDING	MATRIX	CONVERSION

https://en.wikipedia.org/wiki/DCI-P3
https://pub.smpte.org/pub/rp431-2/

Behind	these	symbols,	there	is	only	a	series	of	additions	and	multiplications	between	the	NPM	"RGB-to-XYZ"
matrix	and	the	input	source	(here,	an	RGB)

The	NPM	-	abbreviation	for	Normalized	Primary	Matrix	-	is	simply	a	term	used	to	indicate	that	we	are	dealing	with
an	interchangeable	matrix	depending	on	the	input	source.

Thus,	if	you	have	an	sRGB	input,	you	will	have	a	matrix	with	specific	values	which	allow	conversion	of	sRGB
values	to	XYZ	values	(and	vice	versa).	If	you	have	a	DCI-P3	input,	you	will	have	another	matrix,	and	so	on	for	each
colorspace.

This	normalized	primary	matrix	is	an	3x3	matrix	8	which	will	be	multiplied	by	the	input	values	to	give	its	XYZ
output	:

A	simplified	form	of	this	computation	(almost)	:

Thus,	for	example,	if	we	have	an	XYZ	matrix	(NPM)	like	this	:

[1,	3,	4]
[6,	1,	2]
[8,	9,	5]

and	an	input	like	this	:

[22,	33,	44]

Our	matrix	computation	will	be	:

(1	*	22)	+	(3	*	33)	+	(4	*	44)
(6	*	22)	+	(1	*	33)	+	(2	*	44)
(8	*	22)	+	(9	*	33)	+	(5	*	44)	

From	this	point,	we	can	apply	any	matrix	to	any	input.

file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn8

Small	reminder

Before	this	step,	you	need	to	linearize,	that	means,	if	you	have	a	gamma	on	your	input	image,	you	need	to
bring	it	back	to	a	neutral	gamma	of	1.0,	then	proceed	to	the	XYZ	conversion.

The	XYZ	conversion	involves	taking	each	source	value	and	applying	a	specific	matrix	based	on	the	input
colorspace	(sRGB,	DCI-P3,	...)	:	the	output	will	be	new	values	in	XYZ	colorspace.

There	are	various	conversion	matrices	to	XYZ	colorspace	(see	the	paragraph	Matrix	Museum)	because	for	each
existing	input	colorspace,	there	is	a	corresponding	conversion	matrix.	Here,	we	use	two	matrixes	:	one	for	RGB
DCI-P3	and	one	for	sRGB/Rec709	9	:

The	official	matrix	DCI-P3	→	XYZ	defined	in	the	SMPTE	431-2	-	Reference	Projector	and	Environment	:

R	x G	x B	x

X = 0.4451698156 + 0.2771344092 + 0.1722826698

Y = 0.2094916779 + 0.7215952542 + 0.0689130679

Z = 0.0000000000 + 0.0470605601 + 0.9073553944

The	official	matrix	sRGB/Rec709	→	XYZ	defined	in	the	SMPTE	RP-176	/	RP-177	#	:

R G B

X = 0.4123907993 0.3575843394 0.180487884

Y = 0.2126390059 0.7151686788 0.0721923154

Z = 0.0193308187 0.1191947798 0.9505321522

From	one	of	these	matrixes,	we	can	perform	the	conversion	of	each	R,G,B	component	to	X,Y,Z	:

X	=	(red	*	0.4451698156)	+	(green	*	0.2771344092)	+	(blue	*	0.1722826698)
Y	=	(red	*	0.2094916779)	+	(green	*	0.7215952542)	+	(blue	*	0.0689130679)
Z	=	(red	*	0.0000000000)	+	(green	*	0.0470605601)	+	(blue	*	0.9073553944)

We	assume	the	input	is	linearized	:

#	Using	dark	blue	:
#	Reminder	:	Red			(16	bits)	=	0x1212
#	Reminder	:	Green	(16	bits)	=	0x3434
#	Reminder	:	Blue		(16	bits)	=	0x5656

red			=	0.001016
green	=	0.016018
blue		=	0.059250

X	=	(red	*	0.4451698156)	+	(green	*	0.2771344092)	+	(blue	*	0.1722826698)
Y	=	(red	*	0.2094916779)	+	(green	*	0.7215952542)	+	(blue	*	0.0689130679)
Z	=	(red	*	0.0000000000)	+	(green	*	0.0470605601)	+	(blue	*	0.9073553944)

>>>	print(X,	Y,	Z)
0.0150991796848652	0.015854455599597	0.0545146231698818

And	Voila	!	you've	made	your	first	XYZ	conversion	!

Yes,	that's	possible	:)

CONVERSION	TO	XYZ

AND	WITH	IMAGEMAGICK	?

file:///data/www/sherpadown/dcp-inside/Linear
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn9
https://pub.smpte.org/pub/rp431-2/
https://pub.smpte.org/pub/rp176/
https://pub.smpte.org/pub/rp177/
http://car.france3.mars.free.fr/HD/INA-%2026%20jan%2006/SMPTE%20normes%20et%20confs/rp177.pdf
file:///data/www/sherpadown/dcp-inside/Linear

convert	"rgbp3_gamma26.tif"	\
								-gamma	".38461538461538461538"	\																										#	linearize	(1/2.6)
								-color-matrix	\																																											#	conversion	DCI-P3	->	XYZ
										"0.4451698156				0.2771344092				0.1722826698
											0.2094916779				0.7215952542				0.0689130679
											0.0000000000				0.0470605601				0.9073553944"	\
								-gamma	"2.6"	\																																												#	delinearize
								"export.tif"

In	the	first	line,	we	linearize	the	values	(removing	gamma	2.6	via	its	reverse	 1/2.6),	then	we	apply	the	DCI-P3	-
>	XYZ	conversion	matrix,	finally	we	delinearize	it	with	a	small	gamma	2.6.

Keep	in	mind:	this	is	incomplete,	we	only	apply	an	XYZ	conversion	(and	a	gamma),	there	are	many	other	steps	in
the	workflow.	You	will	find	a	complete	tool	at	this	address.

Imagemagick	applies	unexpected	conversions	and	 rounding.	 If	 you	compare	bit	 to	bit,	 you	can	see	very
small	drift	on	some	data,	for	example	a	 0x3580 	(13696)	will	be	a	 0x3581 	(13697).

From	a	 rendering	point	of	view,	don't	panic,	you	won't	 see	anything	at	all,	 the	 image	will	 look	 identical.
Almost	all	data	will	be	DCI/SMPTE	compliant.	 Imagemagick	 is	a	excellent	compromise	 if	you	want	to	test
some	image	conversions	to	X'Y'Z'-DCI	without	a	headache	:)

If	you	remember	the	diagram,	there	are	still	a	few	steps	after	the	XYZ	conversion	:

To	finalize	it,	we	must	do	:

Add	a	gamma	2.6
Leave	from	[0..1]	range	and	convert	it	in	the	good	bitdepth
Bring	back	to	an	(unsigned)	integer

You	can	go	through	the	different	chapters	to	expand	your	understanding.	Below,	a	quick	summary	for	the	next
steps	:

From	the	last	XYZ	output,	all	you	need	to	do	is	apply	a	small	gamma	:

X	=	pow(X,	1/2.6)
Y	=	pow(Y,	1/2.6)
Z	=	pow(Z,	1/2.6)

>>>	print(X,	Y,	Z)
0.19934137226195742	0.20311898286700303	0.326620520884937

And	finally,	we	leave	from	our	[0..1]	range	to	a	16-bit	output	:

AND	THE	NEXT	STEP	?

ADD	GAMMA

LEAVE	FROM	[0..1]	RANGE	AND	BITDEPTH	CONVERSION

file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_dcip3_to_xyz.sh
file:///data/www/sherpadown/dcp-inside/Gamma
file:///data/www/sherpadown/dcp-inside/Bitdepth
file:///data/www/sherpadown/dcp-inside/Bitdepth
file:///data/www/sherpadown/dcp-inside/Gamma
file:///data/www/sherpadown/dcp-inside/Bitdepth

X	=	(X	*	0xFFFF)
Y	=	(Y	*	0xFFFF)
Z	=	(Z	*	0xFFFF)

>>>	print(X,	Y,	Z)
13063.83683118738	13311.402542189044	21405.075836194344

As	your	can	see,	there	are	some	decimal	numbers	in	result.	This	will	cause	some	trouble,	because	the	number
13063.83683118738 	gives	in	hexadecimal	 0x464c1f59 	which	is	in	32	bits...	we	are	far	from	our	required	16	or
12	bits	:)

The	only	way	is	to	convert	a	decimal	number	(13063.83683118738)	to	an	(unsigned)	integer	(13063	or	13064).

We	will	bring	them	back	to	an	integer	with	help	of	type	conversion	(float	→	uint16 	or	 uint12)	:

X	=	int(round(X))
Y	=	int(round(Y))
Z	=	int(round(Z))

>>>	print(X,	Y,	Z)
13064	13311	21405

>>>	print(hex(X),	hex(Y),	hex(Z))
0x3308	0x33ff	0x539d																	/*	values	16	bits	*/

These	are	our	values	for	a	X'Y'Z'	10	that	we	can	write	in	a	16-bit	TIF	file.

If	you	want	to	convert	them	to	12	bits,	we	should	apply	this	computation	during	the	"leaving	the	[0...1]	range"
step	:

X	=	(X	*	0xFFF)				/*		4095		*/
Y	=	(Y	*	0xFFF)				/*		4095		*/	
Z	=	(Z	*	0xFFF)				/*		4095		*/

>>>	print(X,	Y,	Z)
816.3029194127156	831.7722348403775	1337.511033023817

X	=	int(round(X))
Y	=	int(round(Y))
Z	=	int(round(Z))

>>>	print(hex(X),	hex(Y),	hex(Z))
0x330	0x340	0x53a																				/*	values	12	bits	*/

Our	values	are	in	12	bits,	we	can	write	them	in	a	12-bit	TIF	file.

The	official	matrix	XYZ	→	DCI-P3	defined	in	the	SMPTE	432-1	-	Color	Processing	for	D-Cinema	:

X	* Y	* Z	*

R = 2.7253940305 + -1.0180030062 + -0.4401631952

G = -0.7951680258 + 1.6897320548 + 0.0226471906

B = 0.0412418914 + -0.0876390192 + 1.1009293786

The	official	matrix	XYZ	→	sRGB/Rec709	defined	in	the	SMPTE	RP-176	:

BRING	BACK	TO	AN	(UNSIGNED)	INTEGER

RATHER	IN	12	BITS	?

CONVERSION	FROM	XYZ

https://en.wikipedia.org/wiki/Decimal
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://en.wikipedia.org/wiki/Type_conversion
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn10
https://pub.smpte.org/doc/eg432-1/20101110-pub/

X	* Y	* Z	*

R = 3.2409699419 + -1.5373831776 + -0.4986107603

G = -0.9692436363 + 1.8759675015 + 0.0415550574

B = 0.0556300797 + -0.2039769589 + 1.0569715142

The	official	matrix	XYZ	→	Rec2020	:

X	* Y	* Z	*

R = 1.7166511880 + -0.3556707838 + -0.2533662814

G = -0.6666843518 + 1.6164812366 + 0.0157685458

B = 0.0176398574 + -0.0427706133 + 0.9421031212

From	one	of	these	matrixes,	we	can	perform	the	conversion	of	each	X,Y,Z	component	to	R,G,B	:

#	Using	dark	blue	:
#	Rappel	:	Red			(16	bits)	=	0x1212
#	Rappel	:	Green	(16	bits)	=	0x3434
#	Rappel	:	Blue		(16	bits)	=	0x5656

#	Rappel	:	red			=	0.001016
#	Rappel	:	green	=	0.016018
#	Rappel	:	blue		=	0.059250

X	=	0.0150991796848652
Y	=	0.015854455599597
Z	=	0.0545146231698818

red			=	(X	*		2.7253940305)	+	(Y	*	-1.0180030062)	+	(Z	*	-0.4401631952)
green	=	(X	*	-0.7951680258)	+	(Y	*		1.6897320548)	+	(Z	*		0.0226471906)	
blue		=	(X	*		0.0412418914)	+	(Y	*	-0.0876390192)	+	(Z	*		1.1009293786)

print(red,	green,	blue)
0.0010159999969451862	0.01601799999824417	0.059250000001124806

Due	to	the	imprecision	of	the	XYZ→RGB	encoding	matrix,	we	get	slightly	drifted	values	compared	to	the	original
source,	but	after	converting	to	16-bit	or	12-bit,	you'll	get	back	on	track	:

#	16-bit	Conversion	:
>>>	print(
				hex(int(0.0010159999969451862	*	0xFFFF)),
				hex(int(0.01601799999824417			*	0xFFFF)),
				hex(int(0.059250000001124806		*	0xFFFF))
)
0x42	0x419	0xf2a

#	Compare	with	references
>>>	print(
				hex(int(0.001016	*	0xFFFF)),
				hex(int(0.016018	*	0xFFFF)),
				hex(int(0.059250	*	0xFFFF))
)
0x42	0x419	0xf2a

To	observe	a	drift,	you	need	to	go	beyond	32	bits	per	component	(with	the	help	of	this	small	tool)

CONVERSION	DRIFT

file:///data/www/sherpadown/dcp-inside/assets/Image/tests_drifts.py

RGB	=	0.07058823529411765	0.20392156862745098	0.33725490196078434
XYZ	=	0.14604061004705882	0.1851777539607843	0.31560671781803923
RGB	=	0.07058823527801708	0.2039215686187231	0.337254901974168
	8	bits	:	0x12										0x34												0x56
	8	bits	:	0x12										0x34												0x56
10	bits	:	0x48										0xd1												0x159
10	bits	:	0x48										0xd1												0x159
12	bits	:	0x121									0x343											0x565
12	bits	:	0x121									0x343											0x565
16	bits	:	0x1212								0x3434										0x5656
16	bits	:	0x1212								0x3434										0x5656
20	bits	:	0x12121							0x34343									0x56565
20	bits	:	0x12121							0x34343									0x56565
24	bits	:	0x121212						0x343434								0x565656
24	bits	:	0x121212						0x343434								0x565656
28	bits	:	0x1212121					0x3434343							0x5656565
28	bits	:	0x1212121					0x3434343							0x5656565
30	bits	:	0x4848484					0xd0d0d0d							0x15959595
30	bits	:	0x4848484					0xd0d0d0d							0x15959595
32	bits	:	0x12121212				0x34343434						0x56565656
32	bits	:	0x12121212				0x34343434						0x56565656
34	bits	:	0x48484848				0xd0d0d0d0						0x159595959
34	bits	:	0x48484848				0xd0d0d0d1						0x159595959
#	drift	on	34	bits
36	bits	:	0x121212120			0x343434342					0x565656566
36	bits	:	0x121212121			0x343434343					0x565656565
#	drift	on	36	bits
40	bits	:	0x1212121200		0x343434342a				0x5656565665
40	bits	:	0x1212121212		0x3434343434				0x5656565656
#	drift	on	40	bits
48	bits	:	0x12121212005e				0x343434342a9b		0x56565656650d
48	bits	:	0x121212121212				0x343434343434		0x565656565656
#	drift	on	48	bits
56	bits	:	0x12121212005e2a		0x343434342a9b86				0x56565656650d84
56	bits	:	0x12121212121212		0x34343434343434				0x56565656565658
#	drift	on	56	bits
64	bits	:	0x12121212005e2a00				0x343434342a9b8600		0x56565656650d8400
64	bits	:	0x1212121212121200				0x3434343434343400		0x5656565656565800
#	drift	on	64	bits

We	observe	the	drift	starting	from	34	bits,	which	gives	us	a	delta	since	we	only	go	up	to	12	bits;	And	if,	in	the
future,	we	increase	it,	we	won't	reach	32	bits.

Out-Of-Bound	Values

After	a	conversion	to	RGB	(for	example),	sometimes	your	values	may	be	out-of-bound,	either	negative	or
exceeding	the	maximum	value	allowed	by	the	bitdepth.

For	example,	if	your	16-bit	value	is	65536.370088,	you	know	that	you	cannot	store	this	value	in	16	bits
because	the	maximum	value	for	16-bit	is	65535.	You'll	need	to	correct	these	values.

To	do	that,	no	complicated	computation,	if	your	values	are	negative	or	greater	than	the	maximum	value,
that	means	your	value	is	either	an	absolute	white	or	an	absolute	black	(or	«	a	XYZ	color	that	lies	outside	the
chosen	RGB	colorspace,	commonly	referred	to	as	"Out	of	Gamut"	11).	In	which	case,	you	only	need	to
overwrite	the	old	value	with	either	0	or	the	maxium	value	allowed	by	the	bitdepth.

For	example:

You	have	x	=	65536.370088	:	you	only	need	to	override	this	value	with	x	=	65535	(or	x	=	0xFFFF,	it's	the
same

You	have	x	=	-0.000008	:	you	only	need	to	override	with	x	=	0

Due	to	these	drifts,	don't	try	-	as	a	last	resort	or	an	extreme	case	-	to	recover	the	frame	of	your	movie	by
converting	from	your	XYZ	images.	Prefer	to	keep	a	DCDM	source	or	one	of	the	original	source	files	in	16	bits	or
higher.

Even	if	the	drift	is	minimal,	you	will	lose	some	information,	primarily	due	to	the	12-bit	conversion.

file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fn11

Use	it	only	if	you	have	no	other	choice...

Here	are	the	different	reference	matrices	from	the	SMPTE	:

#	RGB	DCI-P3	->	XYZ:
0.4451698156								0.2771344092								0.1722826698
0.2094916779								0.7215952542								0.0689130679
0.2094916779								0.0470605601								0.9073553944
#	XYZ	->	RGB	DCI-P3
	2.7254									-1.0180						-0.4402
-0.7952										1.6897							0.0226
	0.0412									-0.0876							1.1009

#	RGB	DCI-P3	->	XYZ
0.4453				0.2770							0.1724
0.2096				0.7216							0.0690
0.0001				0.0470							0.9082

#	RGB	DCI-P3	->	XYZ	-	Reference	Projector
0.4452				0.2771							0.1723
0.2095				0.7216							0.0689
0.0000				0.0471							0.9074

#	RGB	DCI-P3	->	XYZ	-	Reference	Projector	10	significant	digits
0.4451698156								0.2771344092								0.1722826698
0.2094916779								0.7215952542								0.0689130679
0.0000000000								0.0470605601								0.9073553944

#	XYZ	-	RGB	DCI-P3	-	10	significant	digits
	2.7253940305							-1.0180030062							-0.4401631952
-0.7951680258								1.6897320548								0.0226471906
	0.0412418914							-0.0876390192								1.1009293786

#	RGB	DCI-P3	->	XYZ
0.4452						0.2771						0.1723
0.2095						0.7216						0.0689
0.0000						0.0471						0.9074

Here	are	the	different	matrices	collected	from	the	various	documents,	books	or	sources.	Keep	in	mind	that	these
matrices	may	include	chromatic	corrections	in	their	final	values.

to	be	cleaned	/	improve	readability

#	sRGB	linear	(D65)	->	XYZ		(Simple,	4	digits)	[D65->D65]
				X	=	0.412453			0.357580			0.180423
				Y	=	0.212671			0.715160			0.072169
				Z	=	0.019334			0.119193			0.950227

#	sRGB	linear	(D65)	->	XYZ	(Better,	5	digits)
				X	=	0.4124564			0.3575761			0.1804375
				Y	=	0.2126729			0.7151522			0.0721750
				Z	=	0.0193339			0.1191920			0.9503041

#	SMPTE	RP-177	/	RP-176	/	Glenn	Kennel	book

REFERENCE	MATRICES

SMPTE	RP	431-2-2011	-	D-CINEMA	QUALITY	-	REFERENCE	PROJECTOR	AND	ENVIRONMENT

SMPTE	EG-432-1-2010	-	DIGITAL	SOURCE	PROCESSING	-	COLOR	PROCESSING	D-CINEMA

COLOR	AND	MASTERING	FOR	DIGITAL	CINEMA	(GLENN	KENNEL)

THE	MATRIX	MUSEUM

				X	=	0.4123907993			0.3575843394			0.1804807884
				Y	=	0.2126390059			0.7151686788			0.0721923154	
				Z	=	0.0193308187			0.1191947798			0.9505321522

#	XYZ	->	RGB	Rec709	(SMPTE	RP177)
				X	=	0.4123907993			0.3575843394	0.1804807884
				Y	=	0.2126390059			0.7151686788	0.0721923154
				Z	=	0.0193308187			0.1191947798	0.9505321522

#	DC28.30	(2006)	-	Proj	Ref.
				0.4451698156			0.2771344092			0.1722826698
				0.2094916779			0.7215952542			0.0689130679
				0.0000000000			0.0470605601			0.9073553944

#	StEM
				0.464,		0.2692,	0.1610,	0,
				0.2185,	0.7010,	0.0805,	0,
				0.0000,	0.0457,	0.9087,	0,

#	from	Journal	SMPTE	(October	2009)
												|		0.41239080			0.3575843			0.18048079
				REC709	-|		0.21263901			0.7151687			0.07219232
												|		0.01933082			0.1191948			0.95053215
				XYZ	=	(0.950456,	1.000000,	1.089058)

#	from	SMPTE	RP-431:
#			R'G'B'	(2.6)	->	RGB	[]	->	XYZ	(2.6)	->	X'Y'Z'
				X	=	0.4451698156				0.2771344092				0.1722826698	->	Rdc
				Y	=	0.2094916779				0.7215952542				0.0689130679	->	Gdc
				Z	=	0.0000000000				0.0470605601				0.9073553944	->	Bdc
				Rdc	=		2.7254							-1.0180					-0.4402	->	X
				Gdc	=	-0.7952								1.6897						0.0226	->	Y
				Bdc	=		0.0412							-0.0876						1.1009	->	Z

#	ColorFAQ	(https://poynton.ca/notes/colour_and_gamma/ColorFAQ.html)
				X	(0.412453,	0.357580,	0.180423)	sR
				Y	(0.212671,	0.715160,	0.072169)	sG
				Z	(0.019334,	0.119193,	0.950227)	sB

#	A	Guided	Tour	of	Color	Space
#			CIE	XYZ	->	Rec.	709	RGB		(D65)
				R709	=	(3.240479,	−1.537150,	−0.498535)	*	X
				G709	=	(−0.969256,		1.875992,		0.041556)	*	Y
				B709	=	(0.055648,	−0.204043,		1.057311)	*	Z

				X	=		(0.412453		0.357580			0.180423)	*	R709
				Y	=		(0.212671		0.715160			0.072169)	*	G709
				Z	=		(0.019334		0.119193			0.950227)	*	B709

#	GammaFAQ	(https://poynton.ca/notes/colour_and_gamma/GammaFAQ.html)
				Y	(luminance)	=	0.2126	(R)	+	0.7152	(G),	0.0722	(B)	=	1.0

#	SMPTE	RP	177-1993	:
#	Luminance	Equation	:	
				Y	=	0.2126390059	(R)	+	0.7151686788	(G)	+	0.0721923154	(B)	=	1.0

#	DCI-HDR-D-Cinema-Addendum	
#	https://documents.dcimovies.com/HDR-Addendum/54a2b12fba306370323b0ec7de542ade91581047/#sec-C-2
				X	(0.4865709486482242						0.26566769316910								0.19821728523436)	R
				Y	(0.22897456406975								0.69173852183651								0.07928691409375)	G
				Z	(0																							0.04511338185890								1.04394436890098)	B

				R	(2.49349691194142								-0.93138361791914			-0.40271078445070)	X
				G	(−0.82948896956157								1.76266406031835				0.02362468584193)	Y
				B	(0.03584583024378								−0.07617238926804				0.95688452400768)	Z

#	SMPTE	Journal	Nov/Dec	2014
#			RGB	(BT709)	to	XYZ
				X	=	0.4124		0.3576		0.1805						*	R709
				Y	=	0.2126		0.7152		0.0722						*	G709
				Z	=	0.0193		0.1192		0.9505						*	B709
#			XYZ	to	RGB	(BT2020)
				R2020	=	0.6370		0.1446		0.1689		*	X
				G2020	=	0.2627		0.6780		0.0593		*	Y

				B2020	=	0.0000		0.0281		1.0610		*	Z
#			Merged	R2020->R709
				R2020	=	0.6274		0.3293		0.0433		*	R709
				G2020	=	0.0691		0.9195		0.0114		*	G709
				B2020	=	0.0164		0.0880		0.8956		*	B709

#	XYZ->sRGB	(FreeDCPPlayer)
				sR	=	{		3.2404542,	-1.5371385,	-0.4985314	}	*	X
				sG	=	{	-0.9692660,		1.8760108,		0.0415560	}	*	Y
				sB	=	{		0.0556434,	-0.2040259,		1.0572252	}	*	Z

#	XYZ->sRGB	(image-engineering.de)
				sR	=		3.2410				-1.5374			-0.4986			*	X
				sG	=	-0.9692					1.8760				0.0416			*	Y
				sB	=		0.0556				-0.2040				1.0570			*	Z

#	XYZ->sRGB	(Franck	Chopin)
				R	=		3.24045416		-0.96926603			0.05564343	
				G	=	-1.53713851			1.87601085		-0.20402591	
				B	=	-0.49853141			0.04155602			1.05722519

#	XYZ->sRGB	(RP177,	François	Helt,	Franck	Chopin)
				R	=		3.240575326758			-1.537195988334			-0.498550050270
				G	=	-0.969283339828				1.876044347577				0.041556759645
				B	=		0.055627459197			-0.203967350390				1.056921724748

#	Color	and	Mastering	(Kennel)
				X					0.4452						0.2771						0.1723						*	R
				Y					0.2095						0.7216						0.0689						*	G
				Z					0.0000						0.0471						0.9074						*	B

				R						2.7254					-1.0180					-0.4402					*	X
				G					-0.7952						1.6897					-0.0226					*	Y
				B						0.0412					-0.0876						1.1009					*	Z	
				
#	SMPTE	432-1-2010	-	Digital	Source	Processing	-	Color	Processing	D-Cinema
#	Linear	RGB	->	Linear	XYZ
				X			=			0.4361343357								0.3327206339								0.1888489579								R
				Y			=			0.2180671678								0.6941240810								0.0878087511								G
				Z			=			0.0167743975								0.1204678157								0.9262018955								B

#	AMPAS	Aces
#	https://github.com/ampas/aces-dev/blob/v1.0.3/transforms/ctl/README-MATRIX)
#	AP0-to-XYZ	:
				R_out	=		0.9525523959	*	R_in	+		0.0000000000	*	G_in	+		0.0000936786	*	B_in;
				G_out	=		0.3439664498	*	R_in	+		0.7281660966	*	G_in	+	-0.0721325464	*	B_in;
				B_out	=		0.0000000000	*	R_in	+		0.0000000000	*	G_in	+		1.0088251844	*	B_in;
#	XYZ-to-AP0	:
				R_out	=		1.0498110175	*	R_in	+		0.0000000000	*	G_in	+	-0.0000974845	*	B_in;
				G_out	=	-0.4959030231	*	R_in	+		1.3733130458	*	G_in	+		0.0982400361	*	B_in;
				B_out	=		0.0000000000	*	R_in	+		0.0000000000	*	G_in	+		0.9912520182	*	B_in;
#	AP1-to-XYZ	:
				R_out	=		0.6624541811	*	R_in	+		0.1340042065	*	G_in	+		0.1561876870	*	B_in;
				G_out	=		0.2722287168	*	R_in	+		0.6740817658	*	G_in	+		0.0536895174	*	B_in;
				B_out	=	-0.0055746495	*	R_in	+		0.0040607335	*	G_in	+		1.0103391003	*	B_in;
#	XYZ-to-AP1	:
				R_out	=		1.6410233797	*	R_in	+	-0.3248032942	*	G_in	+	-0.2364246952	*	B_in;
				G_out	=	-0.6636628587	*	R_in	+		1.6153315917	*	G_in	+		0.0167563477	*	B_in;
				B_out	=		0.0117218943	*	R_in	+	-0.0082844420	*	G_in	+		0.9883948585	*	B_in;
#	XYZ-to-P3D60	:
				R_out	=		2.4027414142	*	R_in	+	-0.8974841639	*	G_in	+	-0.3880533700	*	B_in;
				G_out	=	-0.8325796487	*	R_in	+		1.7692317536	*	G_in	+		0.0237127115	*	B_in;
				B_out	=		0.0388233815	*	R_in	+	-0.0824996856	*	G_in	+		1.0363685997	*	B_in;
#	P3D60-to-XYZ	:
				X_out	=		0.5049495342	*	R_in	+		0.2646814889	*	G_in	+		0.1830150515	*	B_in;
				Y_out	=		0.2376233102	*	R_in	+		0.6891706692	*	G_in	+		0.0732060206	*	B_in;
				Z_out	=		0.0000000000	*	R_in	+		0.0449459132	*	G_in	+		0.9638792711	*	B_in;
#	XYZ-to-P3DCI:
				R_out	=		2.7253940305	*	R_in	+	-1.0180030062	*	G_in	+	-0.4401631952	*	B_in;
				G_out	=	-0.7951680258	*	R_in	+		1.6897320548	*	G_in	+		0.0226471906	*	B_in;
				B_out	=		0.0412418914	*	R_in	+	-0.0876390192	*	G_in	+		1.1009293786	*	B_in;
#	XYZ-to-REC709:
				R_out	=		3.2409699419	*	R_in	+	-1.5373831776	*	G_in	+	-0.4986107603	*	B_in;
				G_out	=	-0.9692436363	*	R_in	+		1.8759675015	*	G_in	+		0.0415550574	*	B_in;
				B_out	=		0.0556300797	*	R_in	+	-0.2039769589	*	G_in	+		1.0569715142	*	B_in;

#	XYZ-to-REC2020:
				R_out	=		1.7166511880	*	R_in	+	-0.3556707838	*	G_in	+	-0.2533662814	*	B_in;
				G_out	=	-0.6666843518	*	R_in	+		1.6164812366	*	G_in	+		0.0157685458	*	B_in;
				B_out	=		0.0176398574	*	R_in	+	-0.0427706133	*	G_in	+		0.9421031212	*	B_in;

#	XYZ	->	RGB24
#	ref	:	openjpeg/thirdparty/libtiff/tif_luv.c
				R	=		2.690*X	+	-1.276*Y	+	-0.414*Z
				G	=	-1.022*X	+		1.978*Y	+		0.044*Z
				B	=		0.061*X	+	-0.224*Y	+		1.163*Z

Additionally,	you'll	find	a	large	collection	of	Input→XYZ	or	XYZ→Output	matrices	compiled	by	Bruce	Lindbloom	in
his	article	RGB/XYZ	Matrices.	archive

The	unclassifiable	(for	now)	:

X	=	(52.37	/	L)	*	(X'	/	4095)	2.6

Y	=	(52.37	/	L)	*	(Y'	/	4095)	2.6

Z	=	(52.37	/	L)	*	(Z'	/	4095)	2.6

(L	equals	48	cd/m2)

Have	fun	with	Python	and	Colour	Science	:

>>>	import	numpy	as	np
>>>	import	colour
>>>	primaries_xyz	=	[0.64,	0.33,	0.3,	0.6,	0.15,	0.06]
>>>	d65_illuminant	=	colour.CCS_ILLUMINANTS.get('CIE	1931	2	Degree	Standard	Observer').get('D65')
#	array([0.3127,		0.329])
>>>	np.linalg.inv(
								colour.normalised_primary_matrix(
												primaries_xyz,
												d65_illuminant
)
)
array([
				[3.24096994,	-1.53738318,	-0.49861076],
				[-0.96924364,		1.8759675	,		0.04155506],
				[0.05563008,	-0.20397696,		1.05697151]
])

The	result	corresponds	to	the	official	XYZ	→	sRGB/Rec709	matrix	defined	in	the	SMPTE	RP-176.

or	you'll	find	too	XYZ/RGB	conversions	with	 sRGB_to_XYZ 	or	 XYZ_to_sRGB 	methods

Here	are	the	different	files,	tools,	codes	and	assets	used	in	this	chapter	:	 TO	BE	CLEANED

Conversion	TIFF	-	from	16-bits	to	8-bits	:	 conversion_16bits-to-8bits.py
Conversion	TIFF	-	from	16-bits	to	16-bits	DCDM	(12-bits	in	16-bits)	:
conversion_16bits-to-16bits-DCDM.py

Conversion	RGB	→	XYZ	(16-bits)	(with	Gamma)	:	 conversion_rgb2xyz.py
Conversion	XYZ	→	RGB	(16-bits)	(with	Gamma)	:	 conversion_xyz2rgb.py

BONUS	TRACKS

TO	DECODE	AN	X'Y'Z'	IMAGE	X'Y'Z	TO	XYZ

PYTHON	COLOUR	SCIENCE

FILES	AND	ASSETS

TOOLS	AND	CODES

http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
file:///data/www/sherpadown/dcp-inside/assets/Image/XYZ_Matrix.txt
https://www.colour-science.org/
https://colour.readthedocs.io/en/develop/generated/colour.sRGB_to_XYZ.html
https://colour.readthedocs.io/en/develop/generated/colour.XYZ_to_sRGB.html
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_16bits-to-8bits.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_16bits-to-16bits-DCDM.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_rgb2xyz.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_xyz2rgb.py

Conversion	RGB	→	XYZ	(without	Gamma)	:	 conversion_rgb2xyz-without-gamma.py
Conversion	RGB	→	XYZ	(without	conversion	in	[0..1]	range)	:
conversion_rgb2xyz-without-conv-bitdepth.py

Conversion	(complete)	RGB-DCI-P3	→	X'Y'Z	DCI/SMPTE	compliant	(16	bits)	:
conversion_dcip3_to_xyz.sh

Conversion	(complete)	DCI-P3	→	X'Y'Z	DCI/SMPTE	compliant	(16	bits)	(Python)
conversion_dcip3_to_xyz.py

Conversion	(complete)	DCI-P3	→	X'Y'Z	DCI/SMPTE	compliant	(16	bits)	(ImageMagick)
conversion_dcip3_to_xyz.sh

Conversion	(complete)	sRGB	→	X'Y'Z	DCI/SMPTE	compliant	(16	bits)	(Python)
conversion_srgb_to_xyz.py

Conversion	(complete)	sRGB	→	X'Y'Z	DCI/SMPTE	compliant	(16	bits)	(ImageMagick)
conversion_srgb_to_xyz.sh

Tests	out-of-bound	:	 tests_out-of-bound.py
Tests	converions	drifts	:	 tests_drifts.py

RGB	16-bits	:	 rgb-16bits.tif
XYZ	16-bits	:	 xyz-16bits.tif
XYZ	16-bits	(without	Gamma)	:	 xyz-16bits-without-gamma.tif
RGB	8-bits	:	 rgb-8bits.tif
XYZ	8-bits	:	 xyz-8bits.tif
RGB	16-bits	DCDM	(12-bits	in	16-bits)	:	 rgb-16bits-DCDM.tif
4K	RGB	:	 4096x2160.rgb.tif
4K	XYZ	(via	ImageMagick)	:	 4096x2160.xyz.im.tif
4K	XYZ	(via	Python)	:	 4096x2160.xyz.tif
Reference	RGB-DCI-P3	Gamma	3	(2K)	:	 reference_rgbdcip3_gamma26.tif
Reference	sRGB	(Gamma	2.2)	 reference_srgb.tif
Reference	X'X'Z	DCI	Compliant	(Gamma	2.6)	 reference_xyz.tif
Output	file	from	 conversion_dcip3_to_xyz.py 	(X'Y'Z'	DCI	Compliant)	:	 xyz-16bits.tif

SMPTE	:

Digital	Source	Processing	-	Color	Processing	D-Cinema	(SMPTE	EG-432-1-2010)
D-Cinema	Quality	-	Reference	Projector	and	Environment	(SMPTE	RP-431-2-2011)
DCDM	-	Image	Characteristics	(SMPTE	428-1-2006)
Digital	Cinema	Image	Representation	Signal	Flow	(John	Silva,	Journal	SMPTE,	April	2006)
Evaluation	of	Color	Pixel	Representations	for	High	Dynamic	Range	Digital	Cinema	(Ronan	Boitard,
Jean-Philippe	Jacquemin,	Gerwin	Damberg,	Goran	Stojmenovik,	et	Anders	Ballestad	-	Journal	SMPTE,	March
2018)

Autres	ressources	:

Color	and	Mastering	for	Digital	Cinema	(Glenn	Kennel,	Edition	Focal	Press)
The	CIE	XYZ	and	xyY	Color	Spaces	(Douglas	A.	Kerr)
Colour	FAQ	(Charles	Poynton)
Color	Space	Transform	(Philippe	Colantoni	and	Al)
Colorimetry	and	Physiology	-	The	LMS	Specification	(Françoise	Viénot,	Jean	Le	Rohellec)

ASSETS

REFERENCES

file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_rgb2xyz-without-gamma.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_rgb2xyz-without-conv-bitdepth.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_dcip3_to_xyz.sh
file:///data/www/sherpadown/dcp-inside/assets/JPEG2000/rgb2xyz/conversion_dcip3_to_xyz.py
file:///data/www/sherpadown/dcp-inside/assets/JPEG2000/rgb2xyz/conversion_dcip3_to_xyz.sh
file:///data/www/sherpadown/dcp-inside/assets/JPEG2000/rgb2xyz/conversion_srgb_to_xyz.py
file:///data/www/sherpadown/dcp-inside/assets/JPEG2000/rgb2xyz/conversion_srgb_to_xyz.sh
file:///data/www/sherpadown/dcp-inside/assets/Image/tests_out-of-bound.py
file:///data/www/sherpadown/dcp-inside/assets/Image/tests_drifts.py
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-16bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-16bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-16bits-without-gamma.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-8bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-8bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-16bits-DCDM.tif
file:///data/www/sherpadown/dcp-inside/assets/JPEG2000/rgb2xyz/4096x2160.rgb.tif
file:///data/www/sherpadown/dcp-inside/assets/JPEG2000/rgb2xyz/4096x2160.xyz.im.tif
file:///data/www/sherpadown/dcp-inside/assets/JPEG2000/rgb2xyz/4096x2160.xyz.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/testing/reference_rgbdcip3_gamma26.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/testing/reference_srgb.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/testing/reference_xyz.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/testing/xyz-16bits.tif
http://dougkerr.net/Pumpkin/articles/CIE_XYZ.pdf
https://poynton.ca/notes/colour_and_gamma/ColorFAQ.html
https://faculty.kfupm.edu.sa/ics/lahouari/Teaching/colorspacetransform-1.0.pdf
https://hal.science/hal-01565846/document

Divers	ressources	:

New	CIE	XYZ	functions	transformed	from	the	CIE	(2006)	LMS	functions

1.	 Some	colorspace,	such	as	those	developed	by	ARRI,	Sony	or	Canon	have	some	of	their	primaries	beyond	the
limits	and	even	have	negative	values.	But	there	are	exceptions	(maybe	not	for	long)	:

	↩

2.	 What	X,	Y,	and	Z	actually	represent	:		↩

«	The	XYZ	color	space	is	the	original	model	developed	by	the	CIE.	The	Y	channel	represents	the	luminance	of	a
color.	The	Z	channel	approximately	relates	to	the	amount	of	blue	in	an	image,	but	the	value	of	Z	in	the	XYZ	color
space	is	not	identical	to	the	value	of	B	in	the	RGB	color	space.	The	X	channel	does	not	have	a	clear	color	analogy.
However,	if	you	consider	the	XYZ	color	space	as	a	3-D	coordinate	system,	then	X	values	lie	along	the	axis	that	is
orthogonal	to	the	Y	(luminance)	axis	and	the	Z	axis.	»	--	Understanding	Color	Spaces	and	Color	Space
Conversion
«	The	CIE	color	model	takes	the	luminance	(as	measure	for	perceived	brightness)	as	one	of	the	three	color
coordinates,	calling	it	Y.	The	spectral	response	of	the	luminance	is	specified	as	the	photopic	luminosity	function	(..)
The	coordinate	Z	responds	mostly	to	shorter-wavelength	light,	while	X	responds	both	to	shorter-wavelength	and
longer-wavelength	light.	»	--	Color	Spaces	(Dr.	Rüdiger	Paschotta)
«	CIE	XYZ	functions	are	closely	related	to	a	linear	transform	of	the	LMS	cone	signals.	L	=	long	wavelength,	M	=
middle	wavelength,	S	=	short	wavelength.	»	--	Fundamentals	of	Imaging	Colour	Spaces	(Charles	A.
Wüthrich)

Transformation	LMS→XYZ	:
[X]			[1.9102	;	-1.1121	;		0.2019][L]
[Y]	=	[0.3710	;		0.6291	;		0.0000][M]
[Z]			[0.0000	;		0.0000	;		1.0000][S]

Transformation	XYZ→LMS	:
[L]			[0.3897	;	0.6890	;	-0.0787][X]
[M]	=	[-0.2298	;	1.1834	;		0.0464][Y]
[S]			[0.0000	;	0.0000	;		1.0000][X]

Other	matrix	:	https://psychology.fandom.com/wiki/LMScolorspace
«	XYZ	primaries	are	hypothetical	because	they	do	not	correspond	to	any	real	light	wavelengths.	It	is	additive
scheme	color	spaces,	since	it	define	the	amounts	of	three	stimuli	provided	to	the	eye	(the	three	primaries).	(...)
XYZ	system	is	based	on	the	color	matching	experiments.	X,	Y	and	Z	are	extrapolations	of	RGB	created
mathematically	to	avoid	negative	numbers	and	are	called	Tristimulus	values.	X-value	in	this	model	represents
approximately	the	red/green	part	of	a	color.	Y-value	represents	approximately	the	lightness	and	the	Z-value
corresponds	roughly	to	the	blue/yellow	part.	»	--	CIE	RGB	and	CIE	XYZ	Color	Space
«	The	X-value	in	this	model	represents	approximately	the	red/green	part	of	a	color,	the	Y-value	represents
approximately	the	lightness	and	the	Z-value	corresponds	roughly	to	the	blue/yellow	part.	The	X	value	accepts
values	from	0	to	95.047,	the	Y-value	values	from	0	to	100	and	the	Z-value	values	between	0	and	108.883.	»	--	XYZ

NOTES

http://www.cvrl.org/ciexyzpr.htm
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref1
file:///data/www/sherpadown/dcp-inside/images/Image/CIE-1931-chromaticity-diagram-y-axis-shown-with-comparison-between-ACES-black.png
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref2
https://fr.mathworks.com/help/images/understanding-color-spaces-and-color-space-conversion.html#mw_2b84b55d-031a-4f69-af59-0d36186fbae9
https://www.rp-photonics.com/color_spaces.html
https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Computer_Graphics/3-ima-color-spaces17.pdf
https://mymusing.co/cie-rgb-and-cie-xyz-color-space/
https://www.sttmedia.com/colormodel-xyz

/	CIE	Color	Spaces
«	In	the	XYZ	color	space,	Y	corresponds	to	relative	luminance;	Y	also	carries	color	information	related	to	the	eye's
"M"	(yellow-green)	cone	response.	X	and	Z	carry	additional	information	about	how	the	cones	in	the	human	eye
respond	to	light	waves	of	varying	frequencies.	»	--	Completely	Painless	Programmer's	Guide	to	XYZ,	RGB,
ICC,	xyY,	and	TRC
«	CIE	(..)	which	established	color	spaces	based	on	colors	that	can	be	perceived	by	the	human	eye.	XYZ	does	not
incorporate	negative	numbers	and	instead	uses	tristimulus	values	to	define	the	color	space	that	can	be	seen	by	the
human	eye.	X	represents	the	linear	combination	of	the	cone	response	non-negative	curves	created.	Y	represents
luminance	and	Z	is	defined	as	almost	equal	to	blue	(blue/yellow)	»	--	How	to	convert	between	sRGB	and	CIE
XYZ

3.	 «	Theoretically,	the	XYZ	color	space	has	an	infinite	volume	both	in	terms	of	colors	and	light	»	--	SMPTE	Journal,	March
2018,	Evaluation	of	Color	Pixel	Representations	for	High	Dynamic	Range	Digital	Cinema	(Boitard,	Jacquemin,
Damberg,	Stojmenovik,	Ballestad)	↩

4.	 «	XYZ	colorimetry	is	linear	by	definition,	representing	luminance	levels	that	are	proportional	to	the	light	on	the	screen.
Linear	light	encoding	is	convenient	for	image	synthesis	and	computer	graphics	because	the	underlying	physics	and
shading	models	are	linear.	However,	linear	encoding	does	not	match	the	response	of	the	human	visual	system,	which	is
approximately	logarithmic	in	nature.	»	--	Color	and	Mastering	for	Digital	Cinema	(Glenn	Kennel)	↩

5.	 «	The	three	components	X,	Y,	and	Z	of	the	model	represent	hue,	luminance	(light	intensity	weighted	by	the	eye’s	spectral
sensitivity),	and	saturation,	respectively.	»	--	Anselme	Brice	&	Gadal	Sébastien	↩

6.	 «	Tristimulus:	Intensities	of	the	three	imaginary	colors	outside	the	range	of	possible	chromaticities	—	X,	Y,	and	Z	—	used	to
measure	luminance	and	chromaticity.	»	↩

7.	 Note	that	this	matrix	is	for	the	CIE	2-degree,	which	corresponds	to	a	reference	vision	with	a	2-degree	viewing
angle	(there	is	also	the	CIE	10-degree,	for	peripheral	vision):		↩

Cone	fundamentals	and	CIE	standards,	chapter	"Cone	fundamentals	and	XYZ"	(eprint)
Cone	fundamentals	and	CIE	standards,	chapter	"Cone	fundamentals	and	XYZ"	(paper	with	diagrams)

8.	 About	the	3x3	matrix	:		↩

«	Color	conversion	from	R’G’B’	to	X’Y’Z’	requires	a	three-step	process	which	involves	linearizing	the	color-corrected
R’G’B’	signals	(by	applying	a	2.6	gamma	function),	followed	by	their	passage	through	a	linear	3x3	transform
matrix.	The	resultant	linearized	and	coded	XYZ	signals	are	then	given	an	inverse	2.6	gamma	transfer	characteristic
whose	output	is	quantized	to	12	bits.	»	--	SMPTE	RP-431-2-2011	-	DCinema	Quality	Reference	Projector	and
Environement	-	Chapitre	«	Color	Conversion	to	XYZ	»
«	The	digital	files	were	linearized	(applying	a	gamma	of	2.6),	then	a	3x3	matrix	was	applied	to	convert	RGB	to
XYZ,	followed	by	application	of	the	(1)/2.6	gamma	function.	The	finished	color-corrected	files	were	stored	as	12-bit
X'Y'Z'	data	in	16-bit	TIFF	files.	»	--	Color	and	Mastering	for	Digital	Cinema	(Glenn	Kennel)

9.	 To	be	honest,	we	have	4	matrixes,	one	for	"input	sRGB	->	output	XYZ"	and	one	for	"output	XYZ	->	input
sRGB",	and	the	same	pair	for	the	RGB	DCI-P3	colorspace.		↩

10.	 The	X'Y'Z'	notation	show	that	the	XYZ	includes	its	transfer	function	which	is	-	normally	-	only	the	gamma.
However,	in	some	documents,	the	white	point	normalization	is	included,	and	others	suggest	that	the	transfer
function	encompasses	the	entire	equation	 int(4095(L	*	X	/	52.37)	(1/2.6)) ,	thus	combining	the
white	point	normalization,	the	gamma	and	the	bitdepth.		↩

11.	 Thanks	Rémi	;-)	↩

https://www.sttmedia.com/colormodel-xyz
https://ninedegreesbelow.com/photography/xyz-rgb.html
https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref3
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref4
https://e-cours.univ-paris1.fr/modules/uved/envcal/html/compositions-colorees/representations-couleur/modeles-ref-cie/modele-xyz.html
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref5
https://fr.wiktionary.org/wiki/valeurs_tristimulus
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref6
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref7
https://discovery.ucl.ac.uk/id/eprint/10079410/1/Cone%20fundamentals%20and%20CIE.pdf
http://www.cvrl.org/people/Stockman/pubs/2019%20Cone%20fundamentals%20CIE%20S.pdf
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref8
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref9
file:///data/www/sherpadown/dcp-inside/images/Image/dcdm-color-encoding-equation-explain.en.png
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref10
file:///data/www/sherpadown/dcp-inside/XYZ.en.html#fnref11

