

PREAMBULE

The purpose of this documentation is to describe the **Digital Cinema Package (DCP)** as comprehensively as possible.

Started naively in 2020, this documentation began as a collection of technical tips and information I have been using for years (probably since the early days of the DCI). This documentation aims to be, **at last**, a compilation of my own research on Digital Cinema, especially about DCP, all in one place.

Since the early release of the DCI specifications (2004-2005), getting information about DCP and its details is really complicated (above all because of standards not publicly available). Everyone who implements the standards has never explained to less knowledgeable people.

This documentation is intended for experts and beginners:

- Beginners: a quick and easy understanding of what a DCP is.
- Experts: avoid having to read thousands of pages of the SMPTE standards

This documentation doesn't claim to be perfect, its may have mistakes, omissions or lack of understanding:

- If you have technical or historical skills and you find mistakes or omissions, **do not hesitate to report them**.
- If you are a beginner and some paragraphs seem unclear, do not hesitate to report them as well
- If you have in mind a new potential subject or a missing one, do not hesitate to request it.

This documentation doesn't aim to be a translation of SMPTE standards or DCI specifications: They are too vast, it would be counterproductive to do that, especially because they often change.

This documentation aims to be evolving and updated over time: this is not a static documentation, it evolves to add new technological features and updates to the SMPTE standards. Keep an eye on changelog.

The Source code through this documentation doesn't aim to be "best practices of coding", they are intentionally oversimplified, in order to understand each step. I don't like documentation with complicated source code that only experts can understand. In my point of view, it's a bad way for the original author to prove their own expertise. If you find any unclear source code, report it, I will try to simplify further. This source code aims to have a second purpose: to be used and integrated into any other source code or project. It's like a library of ready-to-use source code, or snippets.

TOOLS AND PROTOTYPES

During the writing of this documentation, I needed some tools, so I wrote them concurrently. You may see their outputs throughout some chapters. In addition, you may find some lighter versions of these tools to help with understanding. You can take a look in the assets directory, you will find small software and source code.

Below, a brief description of these main tools.

To be clear, at this time, these tools are only proof-of-concept, they need a complete rewriting.

However, they are functional for the purpose of this documentation.

MXF ANALYZER

The project is now available in the github repository: https://github.com/sherpadown/mxf-reader/

```
-h, --help
                   show this help message and exit
-f FILENAME, --filename FILENAME = mxf filename
-x EXTRACT, --extract EXTRACT = extract each KLV into files
-k KEY, --key KEY
                   increase output verbosity
-v, --verbose
                   Do not resolv UL (speed)
--filter FILTER
                   filter by name
                   Fuzzy mode only (very slow)
--limit LIMIT
                   stop after x klv parsed
                   Slowdown parse to avoid flood loadavg
--slow
```

With more verbosity:

4

A (very-very) lighter version of MXF analyzer is available here: https://github.com/sherpadown/js-mxf/ (demo)

UL ANALYZER

A (very) quick & dirty Universal Label parser.

```
$ ul "060e2b34020401010d010301027e0100"
SMPTE UL Format
                                             060e2b34.02040101.0d010301.027e0100
Hex Format (lower)
                                             06.0e.2b.34.02.04.01.01.0d.01.03.01.02.7e.01.00
Hex Format (upper)
                                             06.0E.2B.34.02.04.01.01.0D.01.03.01.02.7E.01.00
Hex Format (small)
                                             060e2b34020401010d010301027e0100
                                             Encrypted Essence Container (SMPTE)
parser
                                             essence encrypted
                                             SMPTE.ST.0429-6-2006 - DCP - MXF Track File Essence Encryption, Page 10
resource
                                             060e
UL Header (2 bytes)
                                             2b3402040101
UL Designator (6 bytes)
Item Designator (8 bytes)
                                             0d010301027e0100
1 - Object ID
                                             06
2 - UL Size
                                             0e (14 bytes)
  - ISO/ORG Identifier / UL Code
                                             2b
4 - SMPTE Designator
                                             34
5 - Category Designator
                                             02 (Groups - Sets & Packs)
                                             04 (Variable-Length Pack) - [Length=BER short/long] (All Length)
6 - Registry Designator
7 - Structure Designator
                                             01 (Set/Pack Registry)
8 - Version
                                             01
9 - Item Designator
                                             0d
10 - Item Designator
                                             01
11 - Item Designator
                                             03
12 - Item Designator
                                             01
13 - Item Designator
                                             02
14 - Item Designator
                                             7e
15 - Item Designator
                                             00
16 - Item Designator
```

IAB ANALYZER

An Immersive Audio Bitstream analyzer for IAB assets, such as Dolby Atmos, DTS-X, Barco Auro assets.

The project is now available in the github repository: https://github.com/sherpadown/iab-reader/

JPEG2000 DCI ANALYSER

A JPEG2000 DCI 2K/4K images analyzer.

The project is now available in the github repository: https://github.com/sherpadown/jpeg2000-reader/

```
read file.j2c
SIZ - rsiz
            : Profile 4
SIZ - Xsiz
            : 4096 px
SIZ - Ysiz
           : 1716 px
                                    Binary Parameters: 00000001
COD - Scod
COD - Progression order: 04
                                   Binary Parameters: 00000100
COD - Number of Layers : 1
COD - Multiple Component Transform : 01 00000001
COD - Decomposition levels : 6
COD - CodeBlockSize : 32 x 32
QCD - Sqcd (Scalar coefficient dequantization), Quantization style for all components: 00100010
QCD - Sqcd binary parameters (bit1-3): Number of guard bits 0—7: 0b001 → 1 bits
QCD - Sqcd: 0b00010 → Scalar explicit
QCD - SPqcd (Exponent+Mantissa), Quantization step size value sub-band 0:
    → SPqcd : 0111111100010110 (0x7f16)
    → Mantissa : 01111
    → Exponent :
                      11100010110 : 1814
CME - Registration values 1: Text ISO 8859-1
CME - Text: Created with Doremi Labs DMS2000 SN70062 server v1.8.0. Src0.
POC - [2K] RSpoc (Resolution Start) : 0
                                            (0×00)
POC - [2K] CSpoc (Component Start) : 0
                                            (0 \times 00)
POC - [2K] LYEpoc (Layer)
                                            (0×0001)
POC - [2K] REpoc (Resolution End)
                                            (0x06)
POC - [2K] CEpoc (Component End)
                                            (0x03)
POC - [2K] Ppoc (Progression Order) : 4
                                            (0 \times 04)
POC - [4K] RSpoc (Resolution Start) : 6
                                            (0x06)
TLM - Ztlm: Index of this marker segment: 0
TLM - Stlm: Size of the Ttlm and Ptlm parameters: 01010000
TLM - Stlm Bit-Parameters: SP = 1; Ptlm parameter 32 bits
TLM - Stlm Bit-Parameters: ST = 1; Ttlm parameter 8 bits
TLM - Ttlm - Tile number of tile-part 1: 0
TLM - Ptlm - Length SOT+SOD of tile-part 1: 190 bytes
```

```
SOT - Isot, Tile number : 0
SOT - Psot, Length of SOT+SOD : 190
SOT - TPsot, Tile-part number : 0
SOT - TNsot, Number of tile-parts : 6
(. . . )
[SOD] Start of data (FF93)
data: 176 bytes : eff07ffe0fc0115054afff5574bcab4000000000000002425ff69dc40000000000309097fe4a540000000000061212ffc94a
( . . )
```

CONCLUSION

Go back to table of contents of this documentation.

.....