
The	linearization	step	prepares	data	for	the	next	step,	the	XYZ	conversion,	which	is	a	linear	transformation.	This
transformation	uses	matrix	computation	that	requiring	linear	data	in	input.

Linear	?	Non-Linear	?	What's	the	difference	?

If	you	are	not	familiar	with	the	mathematical	concept	of	linearity,	it's	(rather)	easy	:	a	linear	system	is	the
proportionality	of	each	value.

An	example	of	linear	system	:	one	loaf	of	bread	costs	1€	1,	if	you	buy	two	loaf	of	bread,	the	cost	will	be	2€.	If
you	buy	10	loaf	of	breads,	the	cost	will	be	now	10€,	and	so	on	:	this	is	a	linear	system.

In	a	non-linear	system,	it's	exactly	the	opposite	:	there	is	no	proportionality	for	each	value.	A	logical	progression
may	not	exist.

An	exemple	of	non-linear	system	:	the	baker	applies	a	discount	based	on	the	quantity	of	loaves	of	bread
purchased.	For	each	dozen,	the	discount	will	increase.	This	is	a	non-linear	system	:	the	continuity	of	the	next
value	in	this	sequence	may	not	be	continuous.

Some	few	visuals	examples	for	linear	and	non-linear	:

In	the	world	of	imagery,	we	have	to	deal	with	linear	systems	and	non-linear	systems,	especially	with	logarithmic.
Don't	be	afraid,	it	will	be	easy	:)

But	why	are	we	working	with	both	systems	?	Because	in	computer	system,	it's	better	to	work	with	linear	data,
while	in	the	real	world,	we	are	often	in	non-linear	systems.	We	need	to	switch	between	them	without	any
problem.

LINEARIZATION	

PREFACE

WHAT	IS	LINEAR	AND	NON-LINEAR	?

https://en.wikipedia.org/wiki/Linear_function
file:///data/www/sherpadown/dcp-inside/Linear.en.html#fn1
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Logarithm
file:///data/www/sherpadown/dcp-inside/TOC
file:///data/www/sherpadown/dcp-inside/Linear.en.pdf

Before	going	to	complex	computations	(such	as	XYZ	conversion),	you	must	linearize	each	colorimetric	value	:
computers	(and	matrixes)	work	better	with	:)

According	to	the	documentation	SMPTE	RP-431-2-2011	-	D-Cinema	Quality	-	Reference	Projector	and
Environment,	the	linearization	process	involves	the	following	two	steps	2	:

Removing	the	gamma	from	the	input	image	(unless	if	the	gamma	has	already	been	removed,	so	the
gamma	equals	1.0,	meaning	the	image	is	already	linearized)
Converting	the	colorimetric	values	to	a	floating-point	range	between	0.0	and	1.0.	Even	if	it	is	possible	to	do
without	it,	the	norm	recommands	computing	within	a	[0..1]	range.

Concretely,	the	linearization	aims	to	removing	the	gamma	-	or	to	bring	back	to	a	neutral	gamma	of	1.0	-	before
proceeding	to	a	XYZ	conversion,	which	absolutely	requires	a	linear	input	to	work	correctly.

If	you	don't	apply	a	linear	conversion	to	your	input,	the	XYZ	conversion	will	still	work	(it's	just	matrix
computation),	but	the	result	could	be	awful	:)

Here	is	a	quick	example	of	R'G'B'	linearization	3	to	a	linear	RGB	in	the	[0..1]	range.	
These	concepts	and	examples	will	be	studied	in	more	depth	in	the	following	chapters	especialy	in	the	Gamma	and
Bitdepth	chapters.

In	our	example,	our	input	gamma	is	2.6.
You	must	adapt	this	example	based	on	the	gamma	from	your	input	image.

For	example,	for	an	sRGB	image,	the	gamma	would	be	2.2.

We	suppose	that	our	bitdepth	is	12	bits	per	component	with	a	2.6	input	gamma	:

#	SMPTE	Equation	:	
#	Channel	=	(Channel/4095)^2.6

#	Red	value	equals	0x7ff	(12	bits)
>>>	Red	=	0x7FF

#	We	convert	the	red	value	0x7FF	in	the	[0..1]	range
#	Why	divide	by	4095	?	We	will	see	on	the	following	chapters	Gamma	and	Bitdepth	
#	But,	to	sum	up,	to	convert	a	value	0x7FF	in	a	value	between	0	and	1,
#	we	must	divide	the	value	0x7FF	by	the	maximal	value	in	this	bitdepth,
#	here,	with	a	12-bit	bitdepth,	the	maximal	value	is	0xFFF	(with	all	12	bits	set	to	1)
>>>	Red	=	(Red/4095)			#	4095	==	0xFFF
>>>	print(Red)
0.4998778998778999
#	Red	is	now	within	a	[0..1]	range.

#	Now,	we	can	remove	the	gamma	which	is	non-linear.
#	The	gamma	transfert	function	uses	the	power	law	for	its	computation.
#	We	remove	its	gamma	using	the	pow()	function	:	
>>>	pow(0.4998778998778999,	2.6)
0.16483378645422764		

Our	RED	value	is	now	linear	and	equals	0.164833(...).	We	just	need	to	apply	the	same	computation	to	the	other
components	Green	and	Blue	to	obtain	a	linear	RGB.

With	theses	linear	values,	we	can	now	move	to	the	next	step	:	the	XYZ	conversion	(which	requires	a	linear	input)

1.	 Or	another	price,	it's	just	an	example	:)	↩

THE	LINEARIZATION	PRINCIPLE

QUICK	EXAMPLE	OF	LINEARIZATION

NOTES

file:///data/www/sherpadown/dcp-inside/Linear.en.html#fn2
file:///data/www/sherpadown/dcp-inside/Linear.en.html#fn3
file:///data/www/sherpadown/dcp-inside/Linear.en.html#fnref1

2.	 Linearization	:	↩

«	The	digital	files	were	linearized	(applying	a	gamma	of	2.6),	then	a	3x3	matrix	was	applied	to	convert	RGB	to
XYZ,	followed	by	application	of	the	(1)/2.6	gamma	function.	The	finished	color-corrected	files	were	stored	as	12-bit
X'Y'Z'	data	in	16-bit	TIFF	files.	»	--	Color	and	Mastering	for	Digital	Cinema	(Glenn	Kennel)
«	Color	conversion	from	R’G’B’	to	X’Y’Z’	requires	a	three-step	process	which	involves	linearizing	the	color-
corrected	R’G’B’	signals	(by	applying	a	2.6	gamma	function),	followed	by	their	passage	through	a	linear	3x3
transform	matrix.	The	resultant	linearized	and	coded	XYZ	signals	are	then	given	an	inverse	2.6	gamma	transfer
characteristic	whose	output	is	quantized	to	12	bits.	»	--	SMPTE	RP-431-2-2011	-	DCinema	Quality	Reference
Projector	and	Environement	-	Chapitre	«	Color	Conversion	to	XYZ	»

3.	 R'G'B 	==	 RGB	+	Gamma 	↩

file:///data/www/sherpadown/dcp-inside/Linear.en.html#fnref2
file:///data/www/sherpadown/dcp-inside/Linear.en.html#fnref3

