
If	you	are	not	comfortable	with	the	concept	of	linearity	(in	mathematics),
Take	a	look	at	the	chapter	Linear	before	continuing	with	this	chapter.

A	gamma	is	a	transition	"method"	between	a	linear	world	(such	as	computers)	and	a	non-linear	world	(such	as	display	or
human	vision).	It	is	known	as	"Transfer	Function"	by	the	most	knowledgeable	and	learned	individuals.

Visually,	a	gamma	involves	adjusting	the	luminance.	By	manipulating	the	gamma,	you	can	make	an	image	either	darker
or	brighter.	These	luminance	changes	are	the	result	of	gamma	integration	and	the	calculations	below.

Gamma	versus	Gamut

Do	not	confuse	gamma	with	gamut	:

The	gamma	affects,	among	other	things,	the	contrast	of	the	image	and	the	values	such	as	2.2,	2.4,	2.6...	will	be
used	to	express	it.

A	Gamut	is	a	set	of	colors	within	a	colorspace.

In	a	linear	system,	if	we	want	to	go	from	white	to	black,	there	will	be	a	gradual	and	straight	progression.	For	example,
let's	define	that	the	black	value	as	0,	the	white	as	1	and	the	gray	as	0.5.	We	will	have	perfectly	balanced	intermediate
steps	which	will	form	a	perfectly	straight	line.

Each	color	will	be	equidistant	from	the	previous	and	the	next	color	:

In	our	example,	with	10	values	from	absolute	black	to	absolute	white,	each	step	increases	by	the	same	value	(here,	+10,
but	you	can	have	another	value).

For	example,	a	camera	operates	using	a	linear	system.	Each	photon	is	captured	by	a	photosite	on	the	sensor.	If	there	is
less	light,	the	sensor	converts	fewer	details.	On	the	contrary,	if	there	is	more	light,	the	sensor	converts	it	with	more
details.

The	human	eye	doesn't	work	the	same	way	:	An	eye	adapts	to	its	environment	and	tries	to	counterbalance	the	lack	of
light,	the	darkness	(low	light,	shadows)	and	the	intense	brightness	(highlights).	The	eye	is	more	sensitive	to	changes	in
luminosity	than	the	changes	in	color.	The	eye	can	adjust	the	ambient	lighting	color	to	adapt	certain	color	perceptions
(such	as	white)	in	relation	to	its	environment	1	:	the	eye	perceives	light	non-uniformly,	its	response	is	non-linear.

A	non-linear	system	will	produce	a	more	or	less	distorted	curve.	Here	an	example	with	a	gamma	using	a	logarithm	:

GAMMA
PREFACE

file:///data/www/sherpadown/dcp-inside/Linear
https://en.wikipedia.org/wiki/Gamma_correction
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fn1
file:///data/www/sherpadown/dcp-inside/TOC
file:///data/www/sherpadown/dcp-inside/Gamma.en.pdf

Thus,	we	will	have	this	following	form	:

Don't	rely	too	much	on	these	numbers,	they	aren't	related	to	the	diagram	above.	The	values	are	provided	only	to
illustrate	the	non-linearity,	the	lack	of	proportionality	between	each	value	:)

The	transition	from	one	value	to	another	creates	a	certain	curve.

If	we	quickly	compare	both	linear	and	non-linear	example	:

We	observe	that	the	whites	are	more	white	at	the	beginning	and	at	the	end;	while	blacks	stay	more	to	black.

Note:	with	a	real	gamma,	the	non-linear	values	will	differ	from	those	in	the	example	above.

A	gamma	allows	an	image	to	better	match	our	real,	non-linear	visual	perception.	Thus,	we	apply	a	specific	encoding	on
the	image	to	better	match	its	perception	:

Gamma	lower	than	1.0 Gamma	1.0	(neutral) Gamma	upper	than	1.0

A	gamma	curve	will	be	more	or	less	distorted	depending	on	its	value	(2.2,	2.4,	2.6,	...)

We	apply	a	gamma	according	to	the	viewing	environment	:	the	darker	the	room,	the	higher	the	gamma	value.	The
brighter	the	room,	the	lower	the	gamma	value	:

In	theater,	the	gamma	is	2.6	2

At	home,	the	gamma	will	be	2.4	or	2.2
In	an	office	(for	example),	the	gamma	may	be	2.2

So,	why	we	use	a	gamma	2.6	?	Why	not	a	gamma	2.8	or	3.0	?

First,	the	theater	is	a	very	special	place	with	a	optimal	environment	compared	to	other	environnment	(such	as	office	or
your	home,	where	the	light	can	come	from	anywhere).	The	theater	is	a	dark	place	without	any	stray	light,	allowing	us	to
accentuate	the	contrast	of	the	picture.

Another	aspect	is	that	a	gamma	of	2.6	closely	matches	human	vision	in	this	context	of	darkness.	3	:

Based	on	the	data	from	the	book	Color	and	Mastering	for	Digital	Cinema,	the	diagram	shows	that	the	gamma	of	2.6
is	the	most	closely	matches	human	vision.

In	the	top-left	part,	we	have	the	low	light	(or	shadows,	dark).	In	the	bottom-right	part,	the	highlights	(white,	bright).	You
need	to	work	with	the	different	value	levels	in	a	way	that	stays	below	the	threshold	of	human	visual	detection,	while	also
avoiding	unnecessary	waste	of	values.

file:///data/www/sherpadown/dcp-inside/images/Image/image_gamma_g1div2.png
file:///data/www/sherpadown/dcp-inside/images/Image/image_gamma_g1.png
file:///data/www/sherpadown/dcp-inside/images/Image/image_gamma_g2.png
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fn2
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fn3

The	purple	curve	matches	the	human	vision.	It	should	stay	as	much	as	possible	below	to	avoid	banding	in	the	picture.
Color	banding	happens	when	the	transition	from	one	color	to	another	is	too	abrupt.	These	color	bands	may	appear
depending	on	the	bitdepth	chosen	or	the	colorspace	(gamut)	used,	and	not	just	because	of	the	wrong	gamma.	Most	of
the	time,	you	can	observe	banding	in	the	TV	stream	or	on	a	DVD,	particulary	in	the	darkest	areas	of	the	picture.	Here	are
some	example	with	color	banding	from	trailers	:

It's	important	to	understand	that	applying	a	gamma	is	mainly	a	technical	choice:	a	gamma	allows	gradients	(transition
from	one	value	to	another)	to	be	less	visible	to	the	human	eye.	Abrupt	changes	in	value	are	more	visible.	A	gamma	curve
allows	values	below	the	threshold	of	human	vision	(in	purple).

Among	all	feasible	gamma	curves,	gamma	2.6	is	a	good	compromise.

Modifying	gamma	means	either	linearizing	or	delinearizing,	both	of	which	require	a	type	of	calculation	based	on	the
Power	law	using	a	gamma	value	of	 2.6 	as	input	(must	be	adapted	according	to	the	input)	and	 1/2.6 	as	output	(DCI).

Don't	forget	the	use	of	prime	symbol	 ' 	means	a	gamma.	Thus,	a	 X'Y'Z' 	refers	to	a	 XYZ 	with	a	gamma.	4

Here	are	some	examples	of	the	gamma	transformation	from	 R'G'B' 	to	 X'Y'Z' 	and	vice-versa	:

From	our	 R'G'B' ,	we	remove	its	2.6	gamma	curve	(although	it	could	also	be	a	2.2	gamma),	it	give	us	a	linear	 RGB
(1.0).	From	there,	we	convert	to	 XYZ ,	then	we	apply	a	2.6	gamma	(1/2.6)	resulting	in	a	 XYZ 	with	a	gamma	:
X'Y'Z'

Here,	it's	the	reverse,	we	start	with	an	 XYZ 	with	gamma	(X'Y'Z'),	remove	its	2.6	gamma	(in	blue),	resulting	in	a
linear	 XYZ 	(without	gamma,	or	with	a	1.0	gamma).	After	a	reverse	conversion,	we	obtain	our	 RGB .	From	there,	we	can
proceed	with	another	conversion.

In	the	examples,	we	will	work	with	16-bit	to	be	more	precise.

MODIFY	GAMMA

file:///data/www/sherpadown/dcp-inside/images/Image/banding-1.png
file:///data/www/sherpadown/dcp-inside/images/Image/banding-3.png
file:///data/www/sherpadown/dcp-inside/images/Image/banding-4.png
file:///data/www/sherpadown/dcp-inside/images/Image/banding-2.png
file:///data/www/sherpadown/dcp-inside/images/Image/banding-5.png
file:///data/www/sherpadown/dcp-inside/images/Image/banding-6.png
https://en.wikipedia.org/wiki/Colour_banding
https://en.wikipedia.org/wiki/Power_law
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fn4

In	our	document,	we	will	use	the	 pow() 	function	to	apply	the	power	law	in	our	calculations.

In	mathematics,	the	 pow() 	is	a	simple	equation:	 f(x)	=	a.xg
The	variable	 g 	represents	our	gamma	value,	which	is	either	 2.6 	or	 1/2.6 .

In	Python	-	and	in	other	languages	-	you	can	use	the	 pow() 	function	or	the	double-star	:

>>>	pow(1.5,	2.6)
2.8697051264080295

>>>	(1.5**2.6)
2.8697051264080295

In	C	&	C++,	you	can	use	the	 powf() 	function	:

#include	<stdio.h>
#include	<math.h>

int	main(void)	{
				float	a	=	1.5;
				float	g	=	2.6;
				printf("%.022f\n",	powf(a,	g));
				return	0;
}

#	gcc	powfy.c	-o	powfy	&&	./powfy	
2.8697049617767333984375

In	the	rest	of	the	document,	we	will	only	use	the	 pow() 	function	to	maintain	consistency	with	several	programming
languages.

"Removing"	a	gamma	means	returning	to	a	gamma	of	1.0	:

Gamma	0.38			(1	/	26) Gamma	2.6 Gamma	1.0	(neutral)

+ =

To	make	a	gamma	neutral,	you	just	need	to	:

Apply	a	gamma	 2.6 	to	a	gamma	 1/2.6
And	vice-versa,	Apply	a	gamma	 1/2.6 	to	a	gamma	 2.6

From	this	point,	we	can	see	the	different	calculations	in	the	following	paragraphs.

It's	a	real	dilemma.	By	default,	they	is	no	metadata	that	determines	the	gamma	value	(except	if	the	file	format	allows
including	this	type	of	metadata).	Thus,	we	must	determine	it	based	on	its	colorspace.

POW	!	POW	!	POW	!	

REMOVE	GAMMA	

HOW	CAN	WE	DETERMINE	THE	VALUE	OF	THE	INPUT	GAMMA	?

https://en.wikipedia.org/wiki/Power_law

Level Usage

2.2 sRGB,	...

2.35 Rec709	EBU	Standard	(rarely	used)

2.4 Rec709	to	compensate	for	high	contrast	on	some	display	monitors,	Rec2020

2.6 DCI	P3

Note	that	even	if	a	standard	exists	for	a	type	of	colorspace	and	defines	a	specific	gamma	value	(such	as	the	sRGB
gamma	normalized	to	2.2),	you	can	have	RGB	with	a	gamma	of	2.6	or	even	2.0:	the	image	creator	might	apply	a	more	or
less	contrast	for	various	reasons	(even	the	craziest	ones	:)

Thus,	be	sure	to	verify	wether	the	input	gamma	matches	the	standard-defined	gamma.

Quick	summary	of	the	input	and	output	DCI	gammas	before	continuing	:

In	DCP,	the	gamma	is	 1/2.6
A	projector	removes	a	gamma	of	 1/2.6 	by	applying	a	gamma	of	2.6.

A	gamma	of	 2.6 	may	be	applied	in	two	cases	:

If	you	have	a	gamma	of	 1.0 	(neutral),
apply	a	gamma	of	 2.6 	which	makes	your	picture	darker.

If	you	have	a	gamma	of	 1	/	2.6 ,
apply	a	gamma	of	 2.6 	which	makes	it	neutral,

so	linearized	(For	example,	if	you	want	to	convert	to	`XYZ`)

To	better	understand	the	gamma	conversion,	here	is	the	first	example	without	a	[0..1]	range	conversion	and	using	the
pow() 	function	:

$	python3
r	=	pow(0xFFFF,	2.6)											#	0xFFFF	=	decimal	value	of	"65535"
3332963746773.969

g	=	pow(0xFFFF,	2.6)
3332963746773.969

b	=	pow(0xFFFF,	2.6)
3332963746773.969

In	the	white	color,	the	red,	the	green	and	the	blue	are	in	maximal	value,	so	 0xFFFF .

For	our	example,	 I'm	using	the	hexadecimal	value	 0xFFFF 	because	 I'm	used	to	working	directly	with	the	values

DCI	GAMMAS

APPLY	A	GAMMA	OF	 2.6

CONVERSION	OF	THE	WHITE	COLOR	USING	A	GAMMA	2.6

that	I	can	see	in	a	hexadecimal	viewer.	But	it's	better	to	work	with	decimal	values	-	65535	in	our	case.

Note	that	we	are	working	with	raw	values	(hexa	or	decimal):	Using	these	kind	of	values	may	cause	some	issues:	The
floating-point	values	produced	by	 pow() 	output	are	large,	excessive	and	not	useful	in	a	mathematical	workflow,	and
they	may	cause	precision	issues.	That's	why	it's	better	to	normalize	all	of	these	values	to	a	safer	base	by	using	a	[0..1]
range.	For	reminder,	putting	a	value	into	the	[0..1]	range	means	converting	any	decimal	value	into	a	value	between	0.0
and	1.0.

Now,	let's	see	an	example	with	the	[0..1]	range	conversion.	To	do	this,	we	divide	your	colorimetric	value	by	its	maximum
value	for	the	chosen	bitdepth	(here	16	bits,	so	 0xFFFF)	:

$	python3
VALUE_MAX_16BITS	=	0xFFFF				#	65535
r	=	pow(0xFFFF	/	VALUE_MAX_16BITS,	2.6)
1.0

g	=	pow(0xFFFF	/	VALUE_MAX_16BITS,	2.6)
1.0

b	=	pow(0xFFFF	/	VALUE_MAX_16BITS,	2.6)
1.0

It's	clearer	with	the	[0..1]	range	:	the	minimum	and	maximum	values	produced	by	 pow() 	will	always	be	0.0	(min)	and
1.0	(max)	respectively.

Note	that	with	a	12-bit	bitdepth,	we	will	get	(almost)	the	same	result	:

#	16-bit	gamma	conversion
>>>	pow(0x7FFF	/	0xFFFF,	2.6)							#	0x7FFF	=	32767		/		0xFFFF	=	65535
0.16493194524645807

#	12-bit	gamma	conversion
>>>	pow(0x7FF	/	0xFFF,	2.6)
0.16483378645422764

The	difference	between	16-bit	and	12-bit	is	totally	normal,	we	don't	have	the	same	precision,	so	the	power	law	will	be
different	in	the	end.	However,	we	observe	that	both	results	are	0.164.

Our	first	example	without	the	[0..1]	range	conversion	:

r	=	pow(0x1212,	2.6)							#	decimal	value:	4626	(out	of	65535)
3384812638.485899

g	=	pow(0x3434,	2.6)							#	decimal	value:	13364	(out	of	65535)	
53386913590.93187

b	=	pow(0x5656,	2.6)							#	decimal	value:	22102	(out	of	65535)
197479534076.03644

Using	the	[0..1]	range	conversion	:

VALUE_MAX_16BITS	=	0xFFFF				#	65535
r	=	pow(0x1212	/	VALUE_MAX_16BITS,	2.6)
0.0010155563923436356

g	=	pow(0x3434	/	VALUE_MAX_16BITS,	2.6)
0.016017850071908507

b	=	pow(0x5656	/	VALUE_MAX_16BITS,	2.6)
0.05925042967154389

These	values	are	linearized.

A	gamma	of	 1/2.6 	may	be	applied	in	two	cases	:

CONVERSION	OF	THE	DARK-BLUE	COLOR	USING	A	GAMMA	2.6			

APPLY	A	GAMMA	OF	 1/2.6

https://en.wikipedia.org/wiki/Floating-point_arithmetic
file:///data/www/sherpadown/dcp-inside/Bitdepth

If	you	have	a	gamma	of	 1.0 	(neutral),
apply	a	gamma	of	 1	/	2.6 	will	produce	a	brighter	picture.

If	you	have	a	gamma	of	 2.6 ,
apply	a	gamma	of	 1	/	2.6 	will	make	it	neutral,

so	linearized	(For	example,	if	you	want	to	convert	to	`XYZ`)

We	take	the	linearized	values	of	white	:

Without	[0..1]	range	conversion	:

r	=	pow(3332963746773.969,	1/2.6)
65534.99999999996
>>>	hex(int(round(65534.99999999996)))
'0xffff'

g	=	pow(3332963746773.969,	1/2.6)
65534.99999999996

b	=	pow(3332963746773.969,	1/2.6)
65534.99999999996

With	the	white	color,	we	observe	that	our	output	value	is	nearly	the	maximum	possible	value	for	16-bit	bitdepth	(65535).
If	we	apply	a	 round() 	and	then	 hex() ,	the	result	is	exactly	 0xFFFF .

The	same	example	using	the	[0..1]	range	conversion	with	the	dark-blue	color							:

>>	VALUE_MAX_16BITS	=	0xFFFF				#	65535

#	(R)
>>	pow(0.0010155563923436356,	1/2.6)	*	VALUE_MAX_16BITS
4626.000000000001

>>>	hex(4626)
'0x1212'

#	(G)
>>	pow(0.016017850071908507,	1/2.6)	*	VALUE_MAX_16BITS
13364.000000000002
>>>	hex(13364)
'0x3434'

#	(B)
>>	pow(0.05925042967154389,	1/2.6)	*	VALUE_MAX_16BITS
22102.0

>>	hex(22102)
'0x5656'

The	results	are	 0x1212 ,	 0x3434 	and	 0x5656 ,	just	like	before.

There	are	the	differents	files,	tools,	codes	and	assets	used	in	this	chapter	:

Tools	and	codes	:

EXAMPLE	OF	 1/2.6 	CONVERSION

FILES	AND	ASSETS

Conversion:	TIFF	16-bits	to	8-bits	:	conversion_16bits-to-8bits.py
Conversion:	TIFF	16-bits	to	16-bits	DCDM	(12-bits	into	16-bits)	:	conversion_16bits-to-16bits-DCDM.py
Conversion:	RGB	→	XYZ	(16-bits)	(with	Gamma)	:	conversion_rgb2xyz.py
Conversion:	XYZ	→	RGB	(16-bits)	(with	Gamma)	:	conversion_xyz2rgb.py
Conversion:	RGB	→	XYZ	(without	Gamma)	:	conversion_rgb2xyz-without-gamma.py
Conversion:	RGB	→	XYZ	(without	[0..1]	range	conversion)	:	conversion_rgb2xyz-without-conv-bitdepth.py
Tests	out-of-bound	:	tests_out-of-bound.py
Tests	conversions	drifts	:	tests_drifts.py

Assets	:
RGB	16-bits	:	rgb-16bits.tif
XYZ	16-bits	:	xyz-16bits.tif
XYZ	16-bits	(without	Gamma)	:	xyz-16bits-without-gamma.tif
RGB	8-bits	:	rgb-8bits.tif
XYZ	8-bits	:	xyz-8bits.tif
RGB	16-bits	DCDM	(12-bits	into	16-bits)	:	rgb-16bits-DCDM.tif

Ressources	:

Color	and	Mastering	for	Digital	Cinema	(Glenn	Kennel,	Edition	Focal	Press)
Gamma	FAQ	-	Frequently	Asked	Questions	about	Gamma	(Charles	Poynton)

Autres	ressources	:

Understanding	Gamma	+	other	Transfer	Functions
Gamma	Correction
Understanding	Gamma	Correction
BenQ	Laboratoire	:	Qu’est-ce	que	le	gamma	?	(in	French)

1.	 This	is	precisely	why,	if	you're	standing	outside	a	house	and	looking	into	a	room,	you	might	see	warm	colors	(like
yellow	or	orange).	But	once	you	go	inside,	after	a	short	while,	you’ll	no	longer	perceive	those	warm	tones	as	strongly
-	your	eyes	will	have	adapted.	To	learn	more,	see	the	article	on	visual	adaptation	↩

2.	 References	to	the	application	of	a	2.6	gamma	in	the	transformation	process	:		↩

«	Color	conversion	from	R’G’B’	to	X’Y’Z’	requires	a	three-step	process	which	involves	linearizing	the	color-corrected
R’G’B’	signals	(by	applying	a	2.6	gamma	function)	»	--	SMPTE	RP-431-2-2011	-	DCinema	Quality	Reference
Projector	and	Environement	-	Chapter	«	Color	Conversion	to	XYZ	»
«	The	digital	files	were	linearized	(applying	a	gamma	of	2.6),	then	a	3x3	matrix	was	applied	to	convert	RGB	to	XYZ,
followed	by	application	of	the	1	/	2.6	gamma	function.	The	finished	color-corrected	files	were	stored	as	12-bit	X'Y'Z'
data	in	16-bit	TIFF	files.	»	--	Color	and	Mastering	for	Digital	Cinema	(Glenn	Kennel)
«	First,	the	R’G’B’	data	is	linearized	by	applying	a	simple	gamma	2.6	transfer	function	:	 R	=	(R	/	4095)2.6 	»	--
SMPTE	RP-431-2-2011	-	DCinema	Quality	Reference	Projector	and	Environment	-	Chapter	«	Color	Conversion
to	XYZ	»

3.	 And	also	to	minimize	the	number	of	bits	required	for	encoding,	avoid	contouring	artifacts	in	image	rendering,	and
achieve	a	better	distribution	of	value	levels	within	a	limited	encoding	space	(here,	12	bits).	↩

4.	 The	X'Y'Z'	notation	show	that	the	XYZ	includes	its	transfer	function	which	is	-	normally	-	only	the	gamma.	However,
in	some	documents,	the	white	point	normalization	is	included,	and	others	suggest	that	the	transfer	function
encompasses	the	entire	equation	 int(4095(L	*	X	/	52.37)	(1/2.6)) ,	thus	combining	the	white	point
normalization,	the	gamma	and	the	bitdepth.	↩

REFERENCES

NOTES

file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_16bits-to-8bits.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_16bits-to-16bits-DCDM.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_rgb2xyz.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_xyz2rgb.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_rgb2xyz-without-gamma.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_rgb2xyz-without-conv-bitdepth.py
file:///data/www/sherpadown/dcp-inside/assets/Image/tests_out-of-bound.py
file:///data/www/sherpadown/dcp-inside/assets/Image/tests_drifts.py
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-16bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-16bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-16bits-without-gamma.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-8bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-8bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-16bits-DCDM.tif
https://poynton.ca/notes/colour_and_gamma/GammaFAQ.html
https://www.unravel.com.au/understanding-gamma
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.benq.eu/fr-fr/knowledge-center/knowledge/gamma-monitor.html
https://en.wikipedia.org/wiki/Visual_adaptation
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fnref1
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fnref2
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fnref3
file:///data/www/sherpadown/dcp-inside/images/Image/dcdm-color-encoding-equation-explain.en.png
file:///data/www/sherpadown/dcp-inside/Gamma.en.html#fnref4

