
The	transformation	to	a	12-bit	depth	(bitdepth	or	colordepth)	is	necessary	to	finalize	the	process.	1	We	are	going
to	see	why	this	choice	was	made	and	how	to	apply	this	12-bit	conversion.

In	this	document,	I	mention	bits	per	component,	which	means	that	each	component	(such	as	the	R	in	the	RGB,
or	the	X	in	the	XYZ)	will	have	a	specific	size.	This	size	allows	more	or	less	informations	to	be	stored	for	a	single
component	!

For	example,	"16-bit	per	component"	for	the	RGB	means	:

The	red	value	is	encoded	in	16-bits
The	green	value	is	encoded	in	16-bits
The	blue	value	is	encoded	in	16-bits

Creating	a	single	color	(the	merge	of	the	R+G+B)	requires	16	+	16	+	16	=	48	bits	for	a	single	pixel	!

Don't	confuse	between	a	24-bit	color	and	a	24-bit	component.	A	24-bit	component	means	R24+G24+B24:	so,	the
pixel	size	is	72	bits.	A	24-bit	color	includes	all	3	components,	which	means	you	need	to	divide	24	by	the	number
of	components	to	get	the	size	of	one	component:	24/3	=	8	bits	per	component.

There	is	a	large	gap	in	the	storage	capacity	between	a	24-bit	component	and	a	color	encoded	in	24	bits.

Throughout	all	the	documentation	and	the	SMPTE	standard,	we	refer	only	to	"bits	per	component".

The	choice	of	12-bit	per	component	is	based	on	the	fact	that,	with	12	bits,	the	human	eye	can	no	longer	perceive
differences	between	each	steps	or	potential	visual	artefacts.	We	could	use	more	bits	by	component	but	that
would	have	required	more	storage	space	without	providing	any	practical	benefit	for	projection.

This	choice	2	of	12-bit	is	linked	to	the	Barten	model	for	the	contrast	sensitivity	of	human	eye.	A	study	shows	that
below	~11-bit	encoding	(and	others	parameters),	some	artefacts	may	occur	under	certain	conditions	(such	as	the
banding	already	studied	in	the	chapter	Gamma).	Beyond	this	threshold,	no	artefact	is	visible.

BITDEPTH	
PREFACE

LEXIQUE

THE	CHOICE	OF	12-BIT

https://en.wikipedia.org/wiki/Color_depth
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fn1
https://web.archive.org/web/20221206160418/https://ieeexplore.ieee.org/document/7262492
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fn2
https://spie.org/samples/PM225.pdf
https://www.color.org/hdr/04-Timo_Kunkel.pdf
file:///data/www/sherpadown/dcp-inside/Gamma
file:///data/www/sherpadown/dcp-inside/TOC
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.pdf

Based	on	data	from	the	book	Color	and	Mastering	for	Digital	Cinema,	here	is	an	additional	graph	that	allows
us	to	quickly	show	that	human	vision	has	roughly	an	11-bit	of	depth.	By	choosing	a	higher	bitdepth,	we	prevent
potential	issues	:

Finally,	human	vision	can	distinguish	up	to	10	millions	colors.	With	12-bit	encoding,	we	have	up	to	68	billion	colors
available	3.	That	gives	some	leeway...

The	transition	from	a	higher	bitdepth	to	a	lower	bitdepth	requires	data	conversion,	which	inevitably	leads	to	data
loss.

For	example,	with	a	16-bit	depth,	we	have	the	ability	to	encode	a	color	(or	component)	on	216	=	65.536	values	for
a	single	component.	In	12-bit,	we	have	212	=	4096	values	available.	Thus,	we	need	to	reconnect	the	lost	16-bit
values	to	the	available	12-bits	values.

In	case	of	reductive	conversion	(downgrade)	from	16-bit	to	12-bit,	we	need	to	investigate	inside	the	original	file
because	they	are	some	subtilities	:

Within	the	context	of	a	DCDM	4,	a	TIFF	file	is	considered	to	have	a	pseudo	16-bit	depth.	Each	component	value	is
stored	in	12	bits	but	placed	in	a	16-bit	"container"	(for	example,	the	component	X	is	encoded	in	12-bit	and	stored
using	16	bits).	The	remaining	4	bits	are	used	for	zero-padding.	This	is	a	choice	established	by	the	SMPTE	standard
and	the	DCI	specifications	to	enable	a	simple	conversion	between	16	bits	and	12	bits.	Within	this	context,	we	only
need	to	read	the	first	12	bits	and	ignore	the	next	4	bits	to	obtain	our	12	bits	by	component	without	losing	any
data	:

Example	of	a	single	12-bit	component	in	a	16-bit	container:

BITDEPTH	CONVERSION

A	DCDM	16-BIT	IMAGE	FILE

https://en.wikipedia.org/wiki/Color_vision#cite_note-Judd_1975-26
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fn3
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fn4

In	this	case,	you	will	have	nothing	to	do	except	to	retrieve	the	12	bits	inside	the	16	bits

In	C,	simply	use	a	4-bits	bitshift	:

#include	<stdio.h>
int	main(void)	{
				int	a	=	0xFFF0;
				printf("%x	%d\n",	a,	a);
				printf("%x	%d\n",	a	>>	4,	a	>>	4);
				return	0;
}

#	gcc	shift.c	-o	shift	&&	./shift
fff0	65520
fff	4095

In	Python,	it's	identical	:

>>>	a	=	0xFFF0
>>>	a	>>	4
4095
>>>	hex(a	>>	4)
0xfff

In	a	(true)	16-bit	(or	higher)	per	component	encoding,	a	colorimetric	conversion	is	required	to	map	the	16-bit
color	values	to	the	closest	12-bit	color	values.	For	example,	in	16-bit,	the	available	values	go	from
281,474,976,710,656	to	68,719,476,736	in	12-bit,	which	is	4096	times	less	of	available	values.	The	value	used	in
16-bit	may	not	exist	in	12-bit	(in	fact,	this	will	be	the	case	most	of	the	time).	Thus,	a	value	remapping	in	the	new
colorspace	is	required.	For	example,	we	can	apply	a	Lookup	Table	(LUT):	long	and	time-consuming.	Or	simply	by
using	the	magic	of	the	[0..1]	range	conversion	!

An	extreme	example	of	a	16-bit	conversion	to	...	2-bit	depth	(223	=	64	available	values	only)	:

A	CLASSIC	16-BIT	 	IMAGE	FILE

COLORS	IN	A	CONVERSION

https://en.wikipedia.org/wiki/Lookup_table

In	the	colorimetric	wheel,	we	have	16	bits	per	component,	which	give	us	2163	-	that	is	281,474,976,710,656
available	values	...	just	a	'small'	number	of	combinations.	If	we	downgrade	to	a	2-bit	conversion,	we	only	have	223

=	64	available	colors.	Above,	we	performed	an	image	test	using	only	16	colors,	which	resulted	in	the	loss	of
several	shades.	Thus,	we	need	to	remap	all	the	lost	colors	in	the	new	colorimetric	wheel	:

Fortunately,	it's	possible	to	convert	all	16-bits	values	to	12-bits	values	using	a	simple	calculation,	which	we	will
see	in	the	following	paragraph.

Small	reminder	and	understanding	data	that	we	handle,	especially	the	binary	and	hexadecimal	values	of	certain
bitdepths	:

TECHNICAL	BITDEPTH	CONVERSION

Maximum	values

Bitdepth Hexadecimal Binary Decimal

8	bits 0xFF 1111.1111 255

12	bits 0xFFF 1111.1111.1111 4095

16	bits 0xFFFF 1111.1111.1111.1111 65.535

16	bits	DCDM	(*) 0xFFF0 1111.1111.1111.0000 65.520

(*)	12-bit	data	in	a	16-bit	container.	The	4	last	bits	are	ignored.

To	convert	to	a	different	bitdepth,	all	you	need	to	do	is	convert	the	colorimetric	values	into	[0..1]	range.

A	[0..1]	range	is	defined	where	the	minimum	value	is	 0 	(black),	the	maximum	value	is	 1 	(white),	and	the
average	value	is	 0.5 	(grey).	From	this	point,	all	values	are	abstract,	you	can	work	with	them	without	any	limit.

To	convert	your	value	into	[0..1]	range,	all	you	need	to	do	is	divide	your	value	by	the	maximum	value	of
your	original	bitdepth.	To	convert	to	another	bitdepth,	all	you	need	to	do	is	multiply	the	[0..1]	value	by	the

maximum	value	of	your	destination	bitdepth.

For	example,	in	16-bit,	you	divide	the	maximum	value	in	16-bit	which	is	 0xFFFF 	:

#	new_value	=	previous_value	/	0xFFFF

>>>	0x0000/0xFFFF							#	16-bit	black
0.0

>>>	0xFFFF/0xFFFF							#	16-bit	white
1.0

>>>	0x7FFF/0xFFFF							#	16-bit	gray
0.49999237048905165					#	gray	in	the	[0..1]	range

The	benefit	of	this	conversion	is	that	you	can	now	convert	your	16-bit	value	to	any	bitdepth.

To	convert	your	8-bit	gray,	all	you	need	to	do	is	multiply	by	the	maximum	value	of	8-bit	depth	(255	maximum
values,	which	corresponds	to	 0xFF)

>>>	0.49999237048905165	*	0xFF
127.49805447470817

127	out	of	255	...	We	are	pretty	good	with	the	gray	value	:)

Using	the	[0..1]	range,	you	can	convert	your	relative	value	to	any	bitdepth.

To	finalize	the	conversion,	we	convert	the	float	number	using	a	simple	type	conversion	(float	→	uint16	or	uint12)
and	we	apply	a	simple	 round() 	5	in	order	to	round	down	to	the	closest	number	:

THE	MAGIC	OF	THE	[0..1]	RANGE

CONVERSION	TO	A	POSITIVE	INTEGER	NUMBER

file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fn5

#	With	the	value	127.49
>>>	int(127.49805447470817)
127
>>>	int(round(127.49805447470817))
127

#	With	the	value	127.51
>>>	int(127.51)
127
>>>	int(round(127.51))
128

#	Finally,	convertion	to	hexadecimal	form:
>>>	hex(128)
'0x80'
#	to	check	if	it	really	is	the	average	value	:
>>>	hex(int(round(0xFF	/	2)))
'0x80'

The	bitdepth	is	defined	to	12	or	16	bits

Here	are	the	different	files,	tools,	codes	and	assets	used	in	this	chapter	:

Tools	and	codes	:

Conversion:	From	16-bit	to	DCDM	16-bit	(which	is	12-bit)	:	conversion_16bits-to-16bits-DCDM.py
Conversion:	From	16-bit	to	8-bit	:	conversion_16bits-to-8bits.py
Note	that	this	script	is	useless	in	our	workflow,
We	only	work	using	12-bit	depth,	it's	just	to	show	you	an	conversion	example	from	16-bit	to	8-bit.
Conversion:	RGB→XYZ	without	[0..1]	range	conversion	:	conversion_rgb2xyz-without-conv-
bitdepth.py
This	example	shows	that	we	can	work	with	16-bit	data	without	going	through	the	[0..1]	range	conversion.

Assets	:

RGB	16-bit	:	rgb-16bits.tif
XYZ	16-bit	:	xyz-16bits.tif
XYZ	16-bit	(without	Gamma)	:	xyz-16bits-without-gamma.tif
RGB	8-bit	:	rgb-8bits.tif
XYZ	8-bit	:	xyz-8bits.tif
RGB	16-bit	DCDM	(12-bit	in	16-bit)	:	rgb-16bits-DCDM.tif

SMPTE	:

Digital	Source	Processing	-	Color	Processing	D-Cinema	(SMPTE	EG-432-1-2010)
D-Cinema	Quality	-	Reference	Projector	and	Environment	(SMPTE	RP-431-2-2011)
DCDM	-	Image	Characteristics	(SMPTE	428-1-2006)
Digital	Cinema	Image	Representation	Signal	Flow	(John	Silva,	Journal	SMPTE,	April	2006)
Evaluation	of	Color	Pixel	Representations	for	High	Dynamic	Range	Digital	Cinema	(Ronan	Boitard,
Jean-Philippe	Jacquemin,	Gerwin	Damberg,	Goran	Stojmenovik,	et	Anders	Ballestad	-	Journal	SMPTE,	March
2018)

ARCHIVE	/	IMF

FILES	AND	ASSETS

REFERENCES

file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_16bits-to-16bits-DCDM.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_16bits-to-8bits.py
file:///data/www/sherpadown/dcp-inside/assets/Image/conversion_rgb2xyz-without-conv-bitdepth.py
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-16bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-16bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-16bits-without-gamma.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-8bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/xyz-8bits.tif
file:///data/www/sherpadown/dcp-inside/assets/Image/rgb-16bits-DCDM.tif

Ressources	:

Color	and	Mastering	for	Digital	Cinema	(Glenn	Kennel,	Edition	Focal	Press)

1.	 The	12-bit	conversion	can	be	applied	either	at	the	beginning	or	at	the	end	of	the	workflow.	The	advantage	of
placing	it	at	the	end	is	that	you	can	still	work	in	a	larger	space	during	the	various	conversions,	and	with
greater	precision.		↩

2.	 Archive:	Contrast	Sensitivity	Experiment	to	Determine	the	Bit	Depth	for	Digital	Cinema	↩

3.	 Limited	by	its	colorspace.	Even	if	you	have	the	possibility	of	billions	of	colors,	you	can	be	constrained	by	the
colorspace	itself.	For	example,	with	these	different	colorspaces	overlaid	on	our	visible	colors.

The	different	'triangles'	represent	our	various	color	spaces,	and	the	'horseshoe'	shape	shows	the	range	of
visible	colors.	You	can	see	that	some	color	spaces	are	more	limited	than	others,	meaning	that	certain	colors
won’t	be	included.	So,	bitdepth	isn’t	everything	:-)	↩

4.	 See	SMPTE	428-1	-	D-Cinema	Distribution	Master	—	Image	Characteristics	↩

5.	 Rounding	is	even	mandatory	:	«	The	INT	operator	returns	the	value	of	0	for	fractional	parts	in	the	range	of	0	to
0.4999...	and	+1	for	fractional	parts	in	the	range	0.5	to	0.9999...,	i.e.	it	rounds	up	fractions	above	0.5.	»	--	SMPTE	428-1	-
D-Cinema	Distribution	Master	—	Image	Characteristics	↩

NOTES

file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fnref1
https://web.archive.org/web/20181125135814/https://last.hit.bme.hu/download/firtha/video/DCP/DCP_bit_depth_2.pdf
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fnref2
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fnref3
https://pub.smpte.org/pub/st428-1/
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fnref4
https://pub.smpte.org/pub/st428-1/
file:///data/www/sherpadown/dcp-inside/Bitdepth.en.html#fnref5

